
IBM Bayesian Optimization Accelerator

1.1.0.1

Deployment Guide

IBM

Contents

Chapter 1. Deployment Guide.. 1
BOA deployment process.. 1
Configuration and deployment concepts.. 15
BOA configuration tool reference.. 16

Running the BOA configuration tool.. 16
BOA configuration file reference... 20

Chapter 2. Administration Guide.. 31
Log in to the administration GUI... 31
Navigating the dashboard..32
Working in the administration GUI.. 33

Chapter 3. BOA SDK Guide... 35
SDK API.. 35
The user commands.. 35
Experiment configuration and execution.. 36
Camelback example.. 39

Chapter 4. User Guide..45
Getting Started with BOA...45
Experiment configuration.. 45

Complete configuration example...52
Batch sampling.. 52
Multiple objective optimization... 53
Optimization with constraints... 55
Troubleshooting... 55
Annexure I..60
Annexure II.. 62

Chapter 5. BOA Fix Tool... 65
PTF1 for Fix Pack 1.1.0.1 Deployment Using BOA Fix Tool..65
Rolling Back PTF1 for Fix Pack 1.1.0.1... 66
SDK Considerations of PTF1 for Fix Pack 1.1.0.1... 67

Chapter 6. Release notes... 69

Notices..73
Privacy policy considerations.. 74

 iii

iv

Chapter 1. Deployment Guide

BOA deployment process
The BOA deployment process has three distinct phases. The three subsequent phases are installing host
prerequisites, installing BOA, and configuring BOA.

• Installing host prerequisites:

BOA depends on a set host prerequisite software product. Examples of these products include Docker
Engine and IBM Spectrum LSF. You use the installation and configuration tools that are provided by each
of these prerequisite products to set up the prerequisite software.

• Installing BOA:

After you completed the setup of the host prerequisite products, then install BOA. During the BOA
installation, a BOA installation directory on the host is created, and the Docker images that are
associated with BOA into the local Docker registry on the host are loaded. The BOA installation program
installs the BOA.

• Configuring BOA:

After BOA is installed, configure the BOA system by using the BOA configuration tool. During the
configuration process, a set of deployment files that are used to run the BOA software on the host are
created.

The BOA configuration tool configures an initial setup to establish a working system. The tool is also
used to update the configuration settings.

Installing and Configuring Host Prerequisite Software
Its mandatory to install the prerequisite software products before installing BOA on any Power9 server.
Prerequisites software installation is a one time set up.

Installing CUDA: Check OS and sestatus: check the OS and sestatus of the VM before installing CUDA, as
BOA has been deployed and tested one below recommended OS:

 cat /etc/redhat-release
 Red Hat Enterprise Linux Server release 7.6 (Maipo)
 sestatus
 SELinux status: disabled

If the status is not disabled, edit the file /etc/selinux/config and change the parameter
SELINUX=disabled, you must reboot the system after you have updated the file /etc/selinux/
config.

Configure CUDA prereq repository:
Configure CUDA repository with the given command that will add repository to path “/etc/yum.repos.d/
at.repo”

cat > /etc/yum.repos.d/at.repo << EOF
[advance-toolchain]
name=Advance Toolchain IBM FTP
baseurl=ftp://public.dhe.ibm.com/software/server/POWER/Linux/toolchain/at/redhat/RHEL7
failovermethod=priority
enabled=1
gpgcheck=0
gpgkey=ftp://public.dhe.ibm.com/software/server/POWER/Linux/toolchain/at/redhat/RHEL7/gpg-
pubkey-6976a827-5164221b
EOF

Once the repository added run yum command to install the packages.

© Copyright IBM Corp. 2021 1

yum -y install advance-toolchain-at12.0-devel advance-toolchain-at12.0-runtime

Before installing CUDA package user need to run below packages:

yum -y install pciutils environment-modules
 source /etc/profile.d/modules.sh
 module load at12.0
 yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
 yum clean all
 yum -y install dkms
wget http://mirror.centos.org/altarch/7/os/ppc64le/Packages/vulkan-
filesystem-1.1.97.0-1.el7.noarch.rpm
rpm -i vulkan-filesystem-1.1.97.0-1.el7.noarch.rpm

Downloading and installing the CUDA repo package:

• To download and install the CUDA package, run the following commands:

wget http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda-repo-
rhel7-10-2-local-10.2.89-440.33.01-1.0-1.ppc64le.rpm

rpm -i cuda-repo-rhel7-10-2-local-10.2.89-440.33.01-1.0-1.ppc64le.rpm

Installing CUDA:

• Install CUDA and enable the nvidia-persistneced so that every time you reboot the server the
nvidia servers starts automatically. Run the following commands:

yum -y install cuda

systemctl enable nvidia-persistenced

Modifying udev rules:
Modify the udev rules in the vi /lib/udev/rules.d/40-redhat.rules file as displayed in the
following example. Comment the lines as mentioned below:

Memory hotadd request
#SUBSYSTEM!="memory", ACTION!="add", GOTO="memory_hotplug_end"
#PROGRAM="/bin/uname -p", RESULT=="s390*", GOTO="memory_hotplug_end"

#ENV{.state}="online"
#PROGRAM="/bin/systemd-detect-virt", RESULT=="none", ENV{.state}="online_movable"
#ATTR{state}=="offline", ATTR{state}="$env{.state}"

#LABEL="memory_hotplug_end"

Reboot the host system after installing and configuring the host prerequisites.

• To check the host system, run the following command after the host system restated:

systemctl status nvidia-persistenced

nvidia-smi

2 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

An output similar to the following screen is displayed:

Installing Docker:

• To install Docker, add the below repository to /etc/yum.repos.d:

cat > /etc/yum.repos.d/docker.repo << EOF
[docker]
name=Docker
baseurl=http://ftp.unicamp.br/pub/ppc64el/rhel/7/docker-ppc64el/
enabled=1
gpgcheck=0
EOF

yum -y install docker-ce
systemctl enable --now docker
systemctl status docker

Docker will be installed at /var/lib/docker/ by default. If we aren't installing docker at this default location
which should be avoided then we need to create a symbolic link of this custom docker installation
directory to the default location. For example, If docker is installed at /home/opt/docker/ then create
a symbolic link by running the below command between this directory and the default directory, that
is /var/lib/docker/:

ln -s /home/opt/docker/containers/* /var/lib/docker/containers

Firewall Settings:
Firewall rules must allow ports configured for BOA.

Spectrum LSF 10.1:
Spectrum LSF 10.1 is used in boa appliance as a workload manager. It provides a comprehensive set of
intelligent, policy-driven scheduling features that enables full utilization of your compute infrastructure
resources and ensure optimal application performance. LSF in boa appliance leverages docker container
jobs and runs Bayesian Optimization jobs in docker container on demand.

LSF installation and configuration:

Chapter 1. Deployment Guide 3

Install and configure LSF to support the docker container jobs, memory, and GPU related configuration.

• Unpack LSF 10.1 tar file:

tar -xvf lsf10.1_distro.tar.gz
cd ga
tar -xvf lsf10.1_lsfinstall_linux_ppc64le.tar.Z
cd lsf10.1_lsfinstall

• Update install.config:
The install.config file contains options for LSF installation and configuration. Update the values for
LSF_TOP, LSF_ADMINS, and LSF_CLUSTER_NAME elements as follows:

Note: The value of the LSF_ADMINS element must be lsfadmin.

 LSF_TOP="/home/share/lsf"
LSF_ADMINS="lsfadmin"
LSF_CLUSTER_NAME="boa_appliance"
LSF_MASTER_LIST=<"Hostname of Master LSF">
LSF_ENTITLEMENT_FILE=<"Full path of the entitlement file">
LSF_TARDIR=<"Full path to the directory containing the LSF distribution tar files">
CONFIGURATION_TEMPLATE="DEFAULT"
ACCEPT_LICENSE="Y"
ENABLE_GPU="Y"

• Create user:
Create the LSF administrator user lsfadmin.

useradd lsfadmin
passwd lsfadmin

• User Permissions:
Provide permissions to lsfadmin to files and directory on the host. Make sure the /home/lsfadmin
directory has owner as lsfadmin. If lsfadmin is not the directory owner, run the following command
to make lsfadmin the directory owner:

chown -R lsfadmin:lsfadmin /home/lsfadmin
groupadd docker
usermod -aG docker lsfadmin

Create a service in the /etc/hosts file to provide write access to the lsfadmin user. The following
screen displays an example script to create a service to provide write access to lsfadmin:

cat > /etc/systemd/system/set-etchosts-acl.service << EOF
[Unit]
Description=set etc hosts write permission to lsfadmin service

[Service]
ExecStart=/usr/bin/setfacl -m u:lsfadmin:rw /etc/hosts

[Install]
WantedBy=default.target
EOF

systemctl enable set-etchosts-acl.service
systemctl start set-etchosts-acl.service

• Install LSF:
Execute following commands to install LSF:

1. ./lsfinstall -f install.config

Then enter 1. An output similar to the following screen is displayed after successful LSF installation:

4 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Figure 1. LSF installation success

2. /home/share/lsf/10.1/install/hostsetup --top="/home/share/lsf" --boot="y"

An output similar to the following screen is displayed after successful host setup:

Figure 2. Host setup

3. . /home/share/lsf/conf/profile.lsf

4. Update bashrc for lsfadmin user.

Log in as the lsfadmin user and update bashrc file by running the following command:

ssh lsfadmin@localhost
echo source /home/share/lsf/conf/profile.lsf >> ~/.bashrc

• Update lsf.conf:
The lsf.conf is LSF configuration file that controls the operation of LSF. Ensure following configuration
parameters are in $LSF_ENVDIR/lsf.conf:

LSF_UNIT_FOR_LIMITS=MB
LSF_PROCESS_TRACKING=Y
LSF_LINUX_CGROUP_ACCT=Y
LSB_RESOURCE_ENFORCE="gpu cpu memory"
LSB_ENABLE_HPC_ALLOCATION=Y
LSF_GPU_AUTOCONFIG=Y
LSB_GPU_NEW_SYNTAX=extend
LSF_RSH=ssh
LSF_ROOT_REX=local
LSB_GPU_REQ="mode=exclusive_process"

Chapter 1. Deployment Guide 5

• Update lsf.shared:
The lsf.shared file contains common definitions that are shared by all load sharing clusters defined
by lsf.cluster.cluster_name files. Ensure the following configuration is in the $LSF_ENVDIR/
lsf.shared file to enable the docker container configuration.

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION # Keywords
…
 docker Boolean () () (Docker container)
…
End Resource

• Update lsf.cluster.<boa_appliance>:
This is a cluster configuration file and all LSF hosts are listed in this file. Ensure docker is configured
under the RESOURCES column for MASTER LSF host in the $LSF_ENVDIR/
lsf.cluster.boa_appliance file.

Begin Host
HOSTNAME model type server RESOURCES #Keywords
…
<master lsf hostname> ! ! 1 (mg docker)
…
End Host

• Update lsb.applications:
The lsb.applications file defines application profiles. The CONTAINER parameter in the application
profile enables LSF to use a Docker container for jobs that are submitted to the application profile. The
CONTAINER parameter shall be specified with Bayesian optimization job image name, environment
variable, docker network and labels. This configuration is optional at the time of LSF Installation. In case
admin is not aware of required configuration this step can be skipped however admin must configure
lsb.applications file post BOA configuration.

Begin Application
NAME = boa
DESCRIPTION = Execute application through docker containers
CONTAINER = docker[image(boa/bayesian-opt-job:<build>-<ppc64le>) options(--rm -e
MONGO_HOST=boa-mongo -e MONGO_PORT=27017 -e MONGO_USER=mongoadmin -e MONGO_PASS=secret -e
MONGO_DB_NAME=boa -e CELERY_BROKER_URL=redis://boa-redis:6379 -e
CELERY_RESULT_BACKEND_URL=redis://boa-redis:6379 -e MQTT_BROKER_HOST=boa-mosquitto -e
MQTT_BROKER_PORT=1883 -e MQTT_BROKER_WS_PORT=9001 -e MQTT_BROKER_HOST_EXTERNAL=< hostip> -e
MQTT_BROKER_PORT_EXTERAL=<nginx.http.port> -e MQTT_BROKER_WS_PORT_EXTERNAL=< nginx.http.port> -
e MQTT_BROKER_WS_URL=ws://<hostip>:< nginx.http.port>/mqttws/ -v /usr/lib64:/usr/host/lib64 --
network=<use build id by replacing '.' by '-'>_boa-network --label com.ibm.boa.experiment="1")]
End Application

• Start cluster:
Run the lsfstartup command to start the cluster:

lsfstartup
Type “yes” and Enter password of host machine.

• Verify LSF installation:
Run the lsid command to verify LSF installation. An output similar to the following screen is displayed:

IBM Spectrum LSF Standard 10.1.0.0, Apr 10 2020

• Install LSF fix pack 9:

LSF fixpack is required to have latest features and fixes installed. In BOA appliance it is required to
support docker container jobs and GPU related features and fixes.

Copy LSF fixpack file:

Go to the patch install directory: cd $LSF_ENVDIR/../10.1/install/
Copy the patch file to the install directory $LSF_ENVDIR/../10.1/install/
Run

6 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

badmin hclose all
badmin qinact all

• Run patchinstall:
Run the patchinstall command to install the patch:

./patchinstall <patch file>
Type “yes” for User Input

• After patch install:
After patch install restart all services after the installation of patch:

badmin hshutdown all
lsadmin resshutdown all
lsadmin limshutdown all

lsadmin limstartup all
lsadmin resstartup all
badmin hstartup all

badmin hopen all
badmin qact all

• Verify LSF fixpack installation:
Run the lsid command to verify LSF installation. An output similar to the following screen is displayed:

IBM Spectrum LSF Standard 10.1.0.9, Apr 10 2020

LSF logs:

• You can view LSF logs in the /home/share/lsf/log directory in the host system. The LSF logs can be
configured in the install.config file.

Installing BOA
The BOA installation program is used to perform a one-time setup of the BOA Docker images and to
create a small installation directory of the supporting configuration files. The BOA installation program is a
simple, silent, and response file-based installer. You need to configure a few installation properties during
the BOA installation process. The BOA installation program also helps you to uninstall the BOA.

Unpacking the BOA software package:
Unpack the BOA software distribution archive. BOA is delivered as a compressed archive file in the tgz
format. Create a temporary directory for this package and extract the BOA installation program files from
the archive.

Preparing the installation silent response file:
The BOA installation program is a non-interactive silent installer. The user input is in a properties file that
the BOA installation program reads. You need to update the properties in this file by editing the sample
installation property at BOA_TEMP_DIR/installer/samples/boa_installer.properties.

There are two properties in the boa_installer.properties sample file.

Table 1. Property key in the BOA installer file

Property key Description Usage

LICENSE_ACCEPT This key specifies whether the
user accepts the BOA license

agreement.

Allowable values are yes and no.
BOA is installed if the value yes is

specified. Specification of yes
constitutes acceptance of BOA

license.

Chapter 1. Deployment Guide 7

Table 1. Property key in the BOA installer file (continued)

Property key Description Usage

BOA_INSTALL_DIR This key specifies the installation
directory in which BOA is

installed.

Specify an absolute directory
path that the user running the
BOA installation program has

permission to create. You must
not give an existing directory

name here.

Running the BOA installation program:
After you prepared the silent response file, you can start installation. Run the BOA_TEMP_DIR/
boa_installer.sh shell script to start the installation.

cd /boabuildtemp/installer/bin
./boa_installer.sh -a install -r /boabuildtemp/installer/samples/boa_installer.properties

The BOA installation program supports the following syntax:

Usage:
 boa_installer.sh -h Display this help message.
 boa_installer.sh -a install -r <response_file> Install BOA with properties defined in
<response_file>.
 boa_installer.sh -a uninstall -r <response_file> Uninstall BOA silently with properties
defined in <response_file>.

BOA installation program supports the following options:

Table 2. Options in the BOA installation program

Option Description Usage

-h Displays a short usage for the
installer

-a Specifies the action that the
installer performs

Specifies install or uninstall the
BOA

-r Path to the silent response file
used for installing or uninstalling

BOA

Specifies the path to the
boa_installer.properties

file

During the installation process, the installer runs the following process:

• Validate the arguments
• Validate that the response file exists and contains the mandatory two properties and that

LICENSE_ACCEPT is true.
• Validate that no file or directory exists at the location that is specified by BOA_INSTALL_DIR.
• Validate that Docker engine is installed, and the Docker daemon is running.
• Create the BOA installation directory.
• Copy the BOA files from the temporary directory to the BOA installation directory.
• Run the command-line interface (CLI) to load the image in the local Docker registry.
• Validate that the docker-compose is already installed, and deploy docker-compose if it is not currently

installed. If user executes boa_installer.sh file without accepting the license in
boa_installer.properties file then accept the license and remove the BOA_INSTALL_DIR.

8 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Troubleshooting installation problems
Specific messages are displayed if the BOA installation program is unable to complete the installation
process. The following are common conditions and corrective responses to take before retrying.

Table 3. Troubleshooting BOA installation

Message Workaround

Either the -a or -r options are not specified. All invocation of the BOA installation program
require the action and response file. Add the

missing option and retry the installation.

A value is not provided for the -a or -r options. Specify one of the allowable actions with the -a
option and specify the response file that contains

installation properties with the -r option.

The response file does not exist. Specify the path to an existing response file by
using the -r option.

The LICENSE_ACCEPT or BOA_INSTALL_DIR
properties are not defined or commented out in the

response file.

Modify the response file to ensure that the
specified properties are defined.

The LICENSE_ACCEPT value is not yes. Modify the response file to ensure that the value
yes is specified for the LICENSE_ACCEPT property.

The BOA_INSTALL_DIR value points to an existing
file or directory.

Ensure that the value you specify for
BOA_INSTALL_DIR points to a non-existent

directory on the BOA host.

The Docker engine is not installed. Use the instructions in the Host Prerequisite
section to install the Docker engine.

The Docker engine is installed, but the Docker
daemon is not running.

Start the Docker daemon with systemctl start
docker and verify that the daemon is successfully

started with systemctl status docker.

The BOA_INSTALL_DIR is not able to be created. Ensure that the permissions to create the
BOA_INSTALL_DIR are compatible with user who

runs the BOA installation program.Errors occurred in copying files from the temporary
installation directory to the BOA_INSTALL_DIR.

Errors occurred in loading the BOA images into the
local Docker registry.

Check the detailed error messages. Ensure that the
storage area used by the Docker daemon has

adequate free space to accommodate the 15 GB of
storage for the BOA Docker images. The default

path for this storage area is /var/docker/lib.

Here is an camelback example:

Chapter 1. Deployment Guide 9

"""
Licensed Materials - Property of IBM
“Restricted Materials of IBM”

5765-R17

© Copyright IBM Corp. 2020 All Rights Reserved.
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp
"""

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
import os, sys
import time
from common.boa_examples_utils import BoaExamplesUtils
from boaas_sdk import BOaaSClient

example_description="""
 This example demonstrates basic BOA usage for a simple optimization problem.

 The BOA SDK has been designed to be simple to use, but flexible in the range of
 configurations available for tailoring the optimization. This is achieved using
 the BOaaSClient object, which facilitates all communication with the BOA server.
 The optimization configuration is handled via a Python dictionary (or
 equivalently a JSON file).

 The camelback example is a two dimensional optimization problem that optimizes
 the six humped camelback function. This function has global minima
 f(x) = -1.0316 at x = (0.0898, -0.7126) and (-0.0898, 0.7126))
 """

"""
Perform parsing of common commandline arguments shared by all BOA examples.
"""
args = BoaExamplesUtils.parse_commandline_args(example_description, default_epochs=40)
hostname = BoaExamplesUtils.get_connection_url(args)
print("Connecting to host: {}".format(hostname))
boaas = BOaaSClient(host=hostname, ca_cert_path=args.ca_cert_path)

def camelback6(x):
 # Six-hump camelback function
 x1 = x[0]
 x2 = x[1]
 f = (4 - 2.1 * (x1 * x1) + (x1 * x1 * x1 * x1) / 3.0) * (x1 * x1) + x1 * x2 + (-4 + 4 * (x2 *
x2)) * (x2 * x2)
 return f

experiment_config = {
 "name": "Reg camelback function",
 "domain": [
 {
 "name": "x1",
 "min": -2,
 "max": 2,
 "step": 0.01
 }, {
 "name": "x2",
 "min": -1,
 "max": 1,
 "step": 0.01
 }
],
 "model": {"gaussian_process": {
 "kernel_func": "Matern52",
 "scale_y": True,
 "scale_x": False,
 "noise_kernel": True,
 "use_scikit": False
 }},
 "optimization_type": "min",
 "initialization": {
 "type": "random",
 "random": {
 "no_samples": 3,
 "seed": None
 }
 },
 "sampling_function": {
 "type": "expected_improvement",
 "epsilon": 0.03,
 "optimize_acq": False,
 "outlier": False,
 "bounds": None
 }

}

user = {"_id": "boa_test@test.com", "password": "password"}
user_login = boaas.login(user)

if user_login == None:
 user = {"_id": "boa_test@test.com", "name": "BOA Test",
 "password": "password", "confirm_password": "password"}
 boaas.register(user)
 user_login = boaas.login(user)

print(user_login)
user_token = user_login["logged_in"]["token"]
print("user token")
print(user_token)
create_exp_user_object = {"_id": user["_id"], "token": user_token}
experiment_res = boaas.create_experiment(create_exp_user_object, experiment_config)
print(experiment_res)
experiment_id = experiment_res["experiment"]["_id"]

def check_server_connection():
 """
 Function to check for BOA server connection when BOA server is down, to keep client alive
 """
 connection_attempt = 0

 def wait_for(min_s=1, max_s=360000, increase=1):
 """
 Iterator which yields i value until it is lesser than max
 """
 i = min_s
 while i <= max_s:
 yield i
 i += increase

 # This will make boaas.run to run in loop if in case of server disconnection
 for seconds in wait_for():
 # If BOA server is up and connected, it will go to try block
 # If boaas.run throws error due to connection lost with server
 # It will go to except block and try to reconnect to server
 try:
 boaas.run(experiment_id=experiment_id, user_token=user_token, func=camelback6,
no_epochs=args.epochs, explain=False)
 except Exception as exception:
 connection_attempt += 1
 print(repr(exception)+"Error occurred. Trying to reconnecting to server... ")
 time.sleep(seconds)

 # If server is still not reachable after above waiting period then stop this experiment with
the below error message
 msg = "Reconnection failed after {} connection attempts".format(connection_attempt)
 raise ConnectionError(msg)

Calling this function to reconnect to server in case of outage in between the experiment run
check_server_connection()

best_observation = boaas.best_observation(experiment_id, user_token)
print("best observation:")
print(best_observation)
boaas.stop_experiment(experiment_id=experiment_id, user_token=user_token)

10 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Uninstalling BOA
The following topic describes how to uninstall IBM® Bayesian Optimization Accelerator.

Uninstallation of BOA is performed using the BOA Installation Program and specifying an action of
“uninstall” and a reference to the silent response file for the BOA installation. This should be the same
silent response file that you modified when performing the original installation.

During uninstallation, the BOA Docker images previously loaded into the local Docker registry during
installation are removed from the local Docker registry. The BOA installation directory is not removed
when performing an uninstallation using the BOA Installation Program. You are responsible for deleting
this directory if you no longer have a need for the configuration files and log files contained in the
installation directory.

To perform an uninstallation of BOA, run the BOA_TEMP_DIR/boa_installer.sh shell script specifying the
uninstall action and a path to the silent response file.

cd /boabuildtemp/installer/bin
./boa_installer.sh -a uninstall -r /boabuildtemp/installer/samples/boa_installer.properties

Initial configuration of BOA
After installing BOA, complete the initial configuration of BOA. The configuration process produces a set
of configuration files, called a deployment, that can be used to run BOA.

The BOA configuration tool configures BOA. You can customize parameters during the configuration
process. For an initial configuration of BOA, you can take the default configuration parameters.

• In the LSF configuration section, update the /opt/IBM/boa/installer/samples/
boa_config.yml file for lsfadmin user's password. The following example displays an example of
updating password for the lsfadmin user.

lsf:
 user: lsfadmin
 password:

• To run the BOA configuration tool with the default parameters, use the following commands:

cd /opt/IBM/boa/installer/bin
./boa_config_tool.sh -a configure -c /opt/IBM/boa/installer/samples/boa_config.yml

The configure command creates a set of deployment files under the directory /opt/IBM/boa/
deployments/default using the default configuration parameters.

• Copy the lsb.applications file generated by the boa configuration tool to the LSF configuration
directory if you have configured the lsb.applications file during the LSF installation.

Run the following command to copy the file:

cp /opt/IBM/boa/deployments/default/config/lsf/lsb.applications $LSF_ENVDIR/lsbatch/
boa_appliance/configdir/lsb.applications

Type yes to overwrite the file.

Run the badmin reconfig command to reconfigure LSF:

badmin reconfig

An output similar to the following screen is displayed on the successful execution of the command:

Checking configuration files ...
No errors found.
Reconfiguration initiated

Chapter 1. Deployment Guide 11

Directory structure of the BOA deployment installation
After unpacking the BOA installation package, the following directory structure is created. In the table,
BOA_HOME represents the root of the BOA installation directory.

Table 4. Directory structure and content of the directory

Directory Content

BOA_HOME/images The .tar file of the Docker images for BOA. The –
action load_images of the BOA configuration

tool is used to load these images into the local
Docker registry.

BOA_HOME/installer/samples This directory contains sample BOA configuration
files. You can use these files as starting points

when creating your BOA deployments.

BOA_HOME/installer/bin This directory contains the BOA configuration tool
and other scripts for managing your BOA

deployments.

BOA_HOME/installer/templates This directory contains templates for the
configuration files that are associated with a BOA

deployment. The BOA configuration tool combines
configuration information from the BOA

configuration file with these files to produce a BOA
deployment.

BOA_HOME/deployments This directory is the root directory for generated
BOA deployments that are created by the BOA

configuration tool.

BOA_HOME/deployments/deployment_name This is the directory in which the deployment files
for a BOA deployment that is named

deployment_name is stored.

BOA_HOME/sdk This directory contains an installable package for
the BOA Python SDK.

Starting BOA deployment services
Once you have generated a set of deployment files with the BOA configuration tool, start the BOA
services. As BOA is a Docker-based application, use the docker-compose program to manage the BOA
services.

• To start the BOA services, run the following commands:

cd /opt/IBM/boa/deployments/default
docker-compose up -d

The docker-compose up command create a running BOA deployment . After a successful execution of
docker-compose up -d, all the BOA microservices are started, and ready to accept requests from the
BOA SDK client programs and users. For more information, see “Configuration and deployment concepts”
on page 15.

URLs for BOA Services
After starting the BOA services using docker-compose, BOA URLs for those services are available. The
actual URLs are constructed based on the configuration parameters you specified when running the
configure action of the BOA Configuration Tool.

The following configuration elements contribute to the construction of the URLs:

12 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Table 5. Elements of BOA URL

Configuration elements URL contribution

boa_appliance.fqdn Is used as hostname portion of all URLs.

boa_appliance.ip_address Is used as the hostname for IP address-based
URLs.

nginx.http.port Is used as the port for all HTTP-based URLs except
for the BOA Experiment Viewer URL.

nginx.https.port Is used as the port for all HTTPS-based URLs
except for the BOA Experiment Viewer URL.

FQDN-based URLs:
Using the above configuration elements, the following fully-qualified domain named-based URLs are
available after the startup of the BOA services.

Table 6. URL format

URL URL format

BOA Server API URL - HTTP http://boa_appliance.fqdn:nginx.http.port/api

BOA Server API URL - HTTPS https://boa_appliance.fqdn:nginx.https.port/api

BOA Admin Server API URL - HTTPS http://boa_appliance.fqdn:nginx.http.port/api/
admin

BOA Admin Server API URL - HTTPS https://boa_appliance.fqdn:nginx.https.port/api/
admin

BOA Admin UI URL - HTTP http://boa_appliance.fqdn:nginx.http.port

BOA Admin UI URL - HTTPS https://boa_appliance.fqdn:nginx.https.port

BOA Experiment Viewer - HTTPS https://boa_appliance.fqdn:nginx.https.port/
exp_viewer

IP address-based URLs: The IP address-based forms of the URLs are derived by substituing the value of
the boa_appliance.ip_address configuration element in place of the boa_appliance.fqdn configuration
element in the above table. Example URLs using Default Ports The following table lists available URLs
assuming:

• Default port configuration
• A FQDN of myserver.boa.com
• An IP address of 172.20.181.33

Table 7. URL format of IP address-based URLs

URL URL format

BOA Server API URL - HTTP http://myserver.boa.com:80/api

http://172.20.181.33:80/api

BOA Server API URL - HTTPS https://myserver.boa.com:443/api

https://172.20.181.33:443/api

BOA Admin Server API URL - HTTPS http://myserver.boa.com:80/api/admin

http://172.20.181.33:80/api/admin

Chapter 1. Deployment Guide 13

Table 7. URL format of IP address-based URLs (continued)

URL URL format

BOA Admin Server API URL - HTTPS https://myserver.boa.com:443/api/admin

https://172.20.181.33:443/api/admin

BOA Admin UI URL - HTTP http://myserver.boa.com:80

https://172.20.181.33:443

BOA Admin UI URL - HTTPS https://myserver.boa.com:443

https://172.20.181.33:443

BOA Experiment Viewer - HTTPS https://myserver.boa.com:443/exp_viewer

https://172.20.181.33:443/exp_viewer

Managing your BOA deployment with the docker-compose program:
The BOA runtime consists of a set of microservices running as Docker containers. The containers are
wired together and operationally managed using orchestration software called docker-compose. You can
use this program to start and stop the BOA services, to view logs from the services, and to perform other
operational tasks such as querying BOA service status.

The capabilities provided by docker-compose are described in the online help displayed when you specify
“docker-compose” from a terminal on the BOA Appliance. You can also view the command reference for
the docker-compose program at https://docs.docker.com/compose/reference/.

For BOA, you must always run the docker-compose CLI from the directory that contains your BOA
deployment files. This directory is located at: BOA_INSTALL_DIR/deployments/<deployment-name>
where

• BOA_INSTALL_DIR is the BOA installation directory you specified when you ran the BOA Installation
Program.

• <deployment-name> is the name you specified for the –deployment option when configuring your BOA
deployment using the configure action of the BOA Configuration Tool. If you didn’t specify a named
deployment, a deployment name of “default” is used and the following deployment directory is created
to contain your BOA deployment: BOA_INSTALL_DIR/deployments/default

Always change to your named deployment directory and run the docker-compose CLI from that directory
location.

Setting up your SDK client environment:
After installation and configuration of BOA, you can develop programs using the BOA Python SDK to
invoke the BOA Server APIs to create and run experiments. You will need to setup a Python 3.6-based
system where your BOA SDK programs run.

This system must include:

• Python 3.6
• All Python package dependencies required by the BOA Python SDK
• The BOA Python SDK package
• Any additional Python package dependencies that your experiment Python code requires

The BOA Python SDK requires the following Python packages and versions to be installed:

• numpy>=1.12.0
• scikit-learn>=0.18
• paho-mqtt==1.3.1
• requests==2.18.4
• scipy>=0.17.0

14 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

http://myserver.boa.com:80
https://172.20.181.33:443
https://myserver.boa.com:443
https://172.20.181.33:443
https://myserver.boa.com:443/exp_viewer
https://172.20.181.33:443/exp_viewer

• pandas>=0.22.0
• jupyter>=1.0.0

You use the Python pip utility to install the BOA Python SDK in your python environment. Follow these
general steps for the install.

• Copy the BOA Python SDK archive found under BOA_INSTALL_DIR/sdk/lib/boaas_sdk-1.1.0-py3-none-
any.whl on the BOA Appliance to the system where you will run your BOA SDK program.

• If you are using a packaging system that supports a virtual environment concept (like virtualenv or
Anaconda), you should activate the virtual environment you are using for your BOA SDK program
development.

• Install the BOA Python SDK

pip install boaas_sdk-1.1.0-py3-none-any.whl

Requirements for running BOA SDK programs:
The system you are running your BOA SDK program on needs to satisfy the requirements specified in this
section.

• Port Access: If you are using the HTTP-based URL for the BOA Server API, you need to have network
access from the system where your BOA SDK program is executing to the port on the BOA Appliance
specified by configuration element nginx.http.port in your BOA deployment. The default number for this
port is port 80. If you are using the HTTPS-based URL for the BOA Server API, you need to have network
access from the system where your BOA SDK program is executing to the port on the BOA Appliance
specified by configuration element nginx.https.port in your BOA deployment. The default number for
this port is port 443.

• SSL/TLS CA Certificate Setup: If you are using the HTTPS-based URL for the BOA Server API, you need
to transfer the CA Certificate for you deployment from the BOA Appliance to the system where your BOA
SDK program is executing.

On the BOA Appliance, this file is found in path BOA_INSTALL_DIR/deployments/<deployment-name>/
config/ssl/ca.crt where BOA_INSTALL_DIR is the root of your BOA installation directory and
<deployment-name> is the name of your BOA deployment. The default <deployment-name> is “default”.

Once you have transferred the Certificate, you need to add it to the set of trusted CA certificates in your
operating system. This varies based on the operating system you are using.

Configuration and deployment concepts
Configuration is the process of parsing a set of customer-provided configuration parameters and creating
a working BOA deployment from those parameters. Configuration in BOA is carried out by the BOA
Configuration Tool.

The input to the BOA Configuration Tool is a YAML file that is called the BOA Configuration File. This
file provides parameters for all customization that a customer can define to BOA.

A BOA deployment is the complete set of configuration files that are created by the BOA configuration tool
from the input that is provided by the user in the BOA configuration file. Examples of some of the files that
are generated for a BOA deployment from the BOA configuration tool are:

• docker-compose.yml– This is the main orchestration file for BOA. It defines the services that
compose a deployment, their associated Docker images, and the wiring between the services. Wiring
represents the specific environment variables, connection properties, and configuration files that are
used to orchestrate the execution of the services that comprise a BOA deployment.

• SSL/TLS Files – These are certificates and private key files that are used by BOA to implement
transport encryption. These can be generated by the BOA Configuration Tool or can be supplied by the
customer.

• nginx.conf – This is the configuration file for the NGINX container that is run for BOA . This
component provides a reverse proxy and web server function for BOA.

Chapter 1. Deployment Guide 15

• lsfjob.cfg – This is the configuration file for LSF jobs. Boa admin can use this file to specify
application profile for the job, Memory requirement for the job.

• lsb.applications - This file is LSF configuration file that defines the docker container application in
BOA which is having configuration for boa optimization job to run like boa optimization image name,
environment variables, network configuration, labels. Config tool generates this file so admin can use
this file and replace LSF config file at $LSF_ENVDIR/lsbatch/boa_appliance/configdir/lsb.applications by
BOA_INSTALL_DIR/deployments/<deploymentname>/ config/lsf/lsb.applications file created by config
tool. Admin must run "badmin reconfig" when reconfiguring this file.

Once a BOA deployment is created, the user has two primary tools to operationally manage the BOA
deployment:

• Docker-compose program: The docker-compose program provides a command-line interface (CLI) to
operationally administer the BOA deployment. The docker-compose program uses the service
definitions in the docker-compose.yml deployment file to support the operational activities like
starting and stopping the BOA deployment, or managing log files generated by the BOA services.

• BOA Administrative UI: The BOA Administrative UI is a graphical user interface for displaying
information about the BOA deployment, and managing the deployment of BOA.

The BOA configuration tool can be used to generate multiple named BOA deployments. For example, you
might generate a named BOA deployment for your existing production deployment and a separate BOA
deployment to test upgrades and fix packs.

The BOA configuration tool can also be used when performing the initial setup of a BOA deployment or it
can be used to modify an existing BOA deployment that you previously created.

So, in summary:

• For an initial setup of BOA, the customer customizes the BOA deployment by first defining their wanted
configuration in a BOA Configuration File.

• The customer runs the BOA configuration tool to parse and validate the BOA configuration file and
generates a set of configuration files that are called a BOA deployment.

• After generating the BOA deployment, the customer uses the docker-compose program and the BOA
Administrative UI to manage the BOA deployment files and operationally administer the deployment.

• The BOA Configuration Tool can also be used to modify an existing deployment and to set up multiple
BOA deployments with different names.

BOA configuration tool reference

Running the BOA configuration tool
The BOA configuration tool is located in file boa_config_tool.sh in the BOA_HOME/installer/bin
directory. BOA configuration tool is a command-line interface (CLI) that accepts a set of arguments from
the user.

Running the BOA configuration tool
The BOA configuration tool is located in the boa_config_tool.sh file, in the BOA_HOME/
installer/bin directory. The BOA configuration tool is a command-line interface (CLI) that accepts a
set of arguments from the user.

You should always run the BOA configuration tool from the BOA_HOME/installer/bin directory. If you
attempt to run the BOA configuration tool from another directory, an error message is displayed, and the
command fails. The messages generated by the BOA configuration tool are written to standard output of
the terminal.

The BOA configuration tool returns an exit code that indicates the success of the command execution.

• An exit code of 0 indicates that the command was successful.

16 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

• An exit code of 1 indicates that the command failed. In this case, additional error messages identify the
nature of the failure.

1. When running the BOA configuration tool, change to the directory containing the
boa_config_tool.sh shell script.

2. Run the boa_config_tool.sh script passing arguments identifying the operations and parameters
for the command.
The BOA configuration tools accepts arguments in the following format:

• Arguments have both a short form and a long form.
• In the short form, the argument is specified with a dash character followed by a single character

uniquely identifying the argument. For example, -a is the short form used to specify the action that
the BOA configuration tool should perform.

• In the long form, the argument is specified with two dash characters followed by multiple characters
uniquely identifying the argument. For example, --action is the long form used to specify the
action that the BOA configuration tool should perform.

• You can freely mix short and long forms of the arguments when running the BOA configuration tool.
• Some arguments also have argument values. For those arguments, the argument value is provided

after the short or long form of the argument and a space. For example, in --action configure,
the argument value is configure for the –action argument.

Supported actions:
All invocations of the BOA configuration tool include the specification of the action to perform. The
action is specified with either the -a short form or the –action long form.

Table 8. Supported actions

Action Description

configure This action validates the configuration
parameters in a BOA configuration file and

generates a BOA deployment for that
configuration.

validate This action validates the configuration
parameters in a BOA configuration file without

generating BOA deployment files.

Options supported for each action:
In addition to the action that is required for each invocation of the BOA configuration tool, some
actions have additional optional arguments that may be specified. These optional arguments are
scoped to the action. Not all optional arguments apply to each action. The following table specifies the
optional arguments, the actions with which they apply, any default value, and a description of the
argument.

Chapter 1. Deployment Guide 17

Table 9. Options supported for each action

Argument Short
Form

Argument Long
Form

Action(s) Default Description

-c --configfile configure, validate BOA_HOME/
installer/
samples/

boa_config.yml

This argument
identifies the BOA
configuration file
to be processed.

The BOA
configuration file

identifies the
aspects of a BOA
deployment that

can be customized
by the customer.

This is a YAML file.

-d --deployment configure, ivt default This argument
identifies the
named BOA

deployment that is
either generated
(configure action)

or verified (ivt
action).

-o --overwrite configure N/A This argument
instructs the BOA
configuration tool

that it is
acceptable to
overwrite the
contents of an
existing BOA
deployment

directory.

-n --no-overwrite configure N/A This argument
instructs the BOA
configuration tool
that the contents

of an existing BOA
deployment

directory should
not be

overwritten.

-f --force configure N/A This argument
instructs the BOA
Configuration Tool

to bypass any
failed validation
checks and to

generate
deployment files

even if one or
more checks fails.

18 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Table 9. Options supported for each action (continued)

Argument Short
Form

Argument Long
Form

Action(s) Default Description

-nf --no-force configure N/A This argument
instructs the BOA
Configuration Tool

to not generate
deployment files

unless all
validation checks

are satisfied.

-h --help N/A This argument
displays usage

and help
information about

the BOA
configuration tool.

Summary of BOA Configuration Tool Syntax:

usage: boa_config_tool.sh [-h] --action {configure,validate}
 [--configfile CONFIGFILE] [--deployment DEPLOYMENT]
 [--overwrite] [--no-overwrite]
 [--force] [--no-force]

optional arguments:
 -h, --help show this help message and exit
 --action {configure,validate}, -a {configure, validate}
 configuration action to perform (default: None)
 --configfile CONFIGFILE, -c CONFIGFILE
 path to configuration input YAML file used to
 configure BOA (default: /boa_install_root_dir/installe
 r/samples/boa_config.yml)
 --deployment DEPLOYMENT, -d DEPLOYMENT
 name of BOA deployment to be configured (default:
 default)
 --overwrite, -o overwrite existing deployment files (default: False)
 --no-overwrite, -n do NOT overwrite existing deployment files (default:
 False)

Action Details:

• configure action:

The configure action accepts as input the BOA configuration file. The file is parsed and validated. If
all validation checks are satisfied, the action generates a BOA deployment (set of runnable
configuration files).

The configure action can be used to generate an initial deployment of BOA or can be used to update
an existing deployment.

The –configfile argument is used to identify the BOA configuration file to be used for the
configuration process. The –deployment option can be used to specify the named BOA deployment
that is generated by the configure action. The –overwrite and –no-overwrite options can be used
to control whether the configure action will overwrite or preserve a previously generated BOA
deployment.

Chapter 1. Deployment Guide 19

Table 10. Description of the configure action

Command Description

./boa_config_tool.sh --action
configure

Reads and validates a BOA configuration file
from the default location (BOA_HOME/
installer/sample/boa_config.yml). If
the validation is successful, generates a
runnable BOA deployment under BOA_HOME/
deployments/default directory.

./boa_config_tool.sh--action
configure
--configfile /tmp/qa_config.yml
--deployment QA
--no-overwrite

Read and validate the BOA configuration file
located under /tmp/qa_config.yml. If the
validation is successful, generate a runnable
BOA deployment under BOA_HOME/
deployments/QA. If deployment files already
exist under BOA_HOME/deployments/QA, the
files are not overwritten.

• validate action:

The validate action performs the validation checks, that are performed as part of the configure action
without generating the BOA deployment files. This action can be used to test out changes to the BOA
configuration file you are developing or to verify that the BOA Appliance Host prereq software is
deployed and configured correctly.

Table 11. Description of the validation action

Command Description

./boa_config_tool.sh --action
validate

Reads and validates a BOA configuration file
from the default location (BOA_HOME/
installer/sample/boa_config.yml).

./boa_config_tool.sh --action
validate
--configfile /tmp/qa_config.yml

Read and validate the BOA configuration file
located under /tmp/qa_config.yml.

BOA configuration file reference
The BOA configuration file is a YAML file that contains your configurations and customizations for the BAO
environment. When you run the configure or validate actions of BOA configuration tool, you can provide an
argument –configfile that references the path to the BOA configuration file to be used.

A sample BOA configuration file is in the BOA installation tree under the BOA_HOME/installer/
samples/boa_config.yml file. If you did not specify the -configfile argument, the BOA
configuration tool uses this file.

Validation of the configuration
The file must be well-formed YAML. The BOA configuration tool parses the BOA configuration file and
exits immediately if any parsing errors or syntax errors are detected in the BOA configuration file.

In addition to validating that the BOA configuration file is well-formed YAML, the BOA configuration file
also performs additional validation checks against the configuration values you provide in the BOA
configuration file.

Examples of these checks include:

• Validating that the elements representing ports are syntactically valid port numbers
• Validating that the elements representing IP addresses are syntactically valid Ipv4 or Ipv6 addresses

20 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Required and optional configuration elements
Unless otherwise noted, values must be provided for all configuration elements. An exception to this rule
are the configuration for Spectrum LSF configuration elements. If you configure BOA Appliance to use
Python Celery as the job manager, then the Spectrum LSF configuration elements need not be defined.

Some configuration elements accept the value default to indicate that BOA configuration tool should
derive the value for that configuration element.

Basic configuration elements for BOA
The basic networking configuration for the BOA Appliance is described in the initial set of the
configuration elements in the BOA configuration file. These are described in this section.

Sample configuration

The following text box shows a sample of defining the basic configuration elements for BOA.

version: '1.0'
boa_appliance:
 fqdn: default
 ip_address: default
 docker_subnet: "172.178.0.0/16"
 ssh_port: 22

Element descriptions
The following table describes the basic configuration elements.

Table 12. Configuration elements description

Configuration elements Description Format Validation

version Defines the version of
the BOA configuration

file

Must be 1.0 Validates that one of the
allowable values is

specified

boa_appliance Nests various elements
related to the BOA

Appliance

N/A N/A

boa_appliance
.fqdn

The fully qualified
domain name for the

BOA Appliance

default or a fully-
qualified domain name

Validates that either
default is specified or
a valid well-formed fully
qualified domain name

(FQDN) is specified

boa_appliance
.ip_address

The primary IP address
for the BOA Appliance

default or an AP
address

Validates that either
default is specified or

a valid Ipv4 or Ipv6
Internet Protocol

address is specified

boa_appliance
.docker_subnet

The IP network
specification for the

Docker bridge network
that docker-compose
creates for this BOA

deployment

IP network specification
with valid mask

Validates that the value
is a valid Docker subnet

specification

Chapter 1. Deployment Guide 21

Table 12. Configuration elements description (continued)

Configuration elements Description Format Validation

boa_appliance
.ssh_port

The port that the SSH
daemon listens to for

the BOA Appliance

port number Validates the specified
value is an integer in the

valid range of port
numbers

Note:

• If default is specified for boa_appliance.fqdn or boa_appliance.ip_address, then the BOA
configuration tool will derive those values by invoking standard Linux services.

• The sample value for boa_appliance.docker_subnet normally works. If you want to have multiple
BOA deployments actively running on the same BOA Appliance, you need to ensure that all specified
Docker bridge networks are not overlapping. The boa_appliance.docker_subnet is used to
configure such an environment.

• The SSH daemon must be running on the BOA Appliance, also the BOA microservices must be running in
the Docker containers.

Configuring a job manager for BOA
The BOA Appliance spawns BOA jobs that perform the Bayesian optimization tasks. IBM Spectrum LSF is
embedded inside the BOA Appliance and is the default job manager. You can also configure the BOA
Appliance to use Python Celery as the BOA job manager. This section details how that is configured.

Sample configuration

The following text box shows a sample of configuring a job manager for BOA.

job_manager: lsf

Element description
The following table describes the job manager-related configuration elements.

Table 13. Description of the job-manager configuration elements

Configuration elements Description Format Validation

job_manager Specifies the job
manager used by BOA

Appliance when
spawning Bayesian
optimization jobs

Must be one of either lsf
or celery

Validates that one of the
allowable values is

specified

Note:

• IBM Spectrum LSF provides advanced load sharing and job scheduling features. It is the default job
scheduler.

• Python Celery can be used if setting up BOA deployments in a unit or integration test environment
doesn’t have LSF installed.

• The configuration for Python Celery uses a single Celery worker and up to n number of concurrent
Celery subprocesses that are managed by the Celery worker – here n represents the number of installed
CPU cores. This configuration is not currently customizable using the BOA configuration tool.

22 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Configuring BOA and LSF integration
IBM Spectrum LSF is embedded inside the BOA Appliance and is the default job manager. This section
details the configuration elements that can be customized when integrating the BOA Appliance with LSF.
These elements must be provided and are validated when you specify the job_manager configuration
element as lsf.

There are two partition of configuration elements related to LSF:

• Configuration elements that specify how BOA services that are running in Docker communicate with the
LSF services for scheduling and managing BOA optimization jobs. These elements include the
specification of what user credentials are used when calling LSF and the names of the cluster file and
profile files in your LSF deployment.

• Configuration elements that identify the resource requirements that BOA sends to LSF when scheduling
BOA optimization jobs. These configuration elements are used to derive the memory and GPU
requirements sent to LSF when a BOA optimization job is submitted to LSF.

Sample configuration

The following text box shows a sample of configuring LSF Integration with BOA.

lsf:
 user: lsf_user
 password: somepassword
 cluster_file: /home/share/lsf/conf/lsf.cluster.boa_appliance
 profile_file: /home/share/lsf/conf/profile.lsf

Elements description
The following table describes the job manager LSF-related configuration elements.

Table 14. Description of the BOA-LSF integration elements

Configuration elements Description Format Validation

lsf Nests various elements
related to LSF

N/A N/A

lsf.user The LSF user under
which BOA interactions
with LSF are performed

Linux user name Validates that the user
name is specified

correctly, and an SSH
connection to the BOA
Appliance host can be
established with that

user

lsf.password The password
associated with lsf.user

Linux password Validates that the user
name is specified

correctly, and an SSH
connection to the BOA
Appliance host can be
established with that

user

lsf.cluster_file LSF cluster file for the
BOA LSF deployment

Absolute file path to the
LSF cluster definition file

on the BOA Appliance
host

Validates that the file
exists and can be

accessed by the user
specified in lsf.user

Chapter 1. Deployment Guide 23

Table 14. Description of the BOA-LSF integration elements (continued)

Configuration elements Description Format Validation

lsf.profile_file LSF profile file for the
BOA LSF deployment

Absolute file path to the
LSF profile file on the
BOA Appliance host

Validates that the file
exists and can be

accessed by the user
specified in lsf.user

lsf.job_reqts Nest a collection of
configuration elements

that govern how
resource requirements

for BOA jobs are
calculated

N/A N/A

lsf.job_reqts
.mem_safety_factor

Service memory in bytes Non-negative integer
number of bytes

Validates that the
specified value is a non-
negative integer value

lsf.job_reqts
.mem_per_grid_in_byte

s

Memory per grid in bytes Non-negative integer
number of bytes

Validates that the
specified value is a non-
negative integer value

lsf.job_reqts
.gpus_per_job

Number of GPUs to
reserve for each BOA

optimization job

Non-negative integer
number of GPUs

Validates that the
specified value is a non-
negative integer value

Note:

• BOA microservices run as Docker containers inside a Docker bridge network.
• IBM Spectrum LSF is installed on the BOA Appliance host in a single node LSF master configuration.
• When BOA Docker microservices need to perform LSF actions on the BOA Appliance host, they establish

an SSH connection to the BOA Appliance host. The lsf.user and lsf.password configuration
elements are used as the credentials for the connection.

• If such a connection can be established, it is used to validate that the user named in the lsf.user
element can access the host files referenced in the lsf.cluster_file and lsf.profile_file
elements.

• If the above validations are successful, the BOA configuration tool finally attempts to source the profile
identified in lsf.profile_file and run the lsid command on the host.

• If all above validations are successful, the LSF and BOA integration is in a working state.
• The SSH daemon must be configured correctly and running, and the LSF daemons must be started when

the BOA configuration tool is invoked.

LSF job configuration
This is the configuration file that BOA appliance requires to enable docker container LSF jobs and BOA
admin can use this file to specify application profile for the job, Memory requirement for the job,
environment variable for the job.

The following text box shows a sample of configuring LSF job.

LSF_JOB_TYPE="docker"
LSF_APP_NAME="boa"
LSF_JOB_ENV="all"
LSF_JOB_DEFAULT_MEM_REQ=50

The following table describes the LSF job related configuration elements:

24 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Table 15. Description of the LSF job elements

Configuration elements Description Format Default

LSF_JOB_TYPE Type of the job String LSF_JOB
_TYPE="docker"

LSF_APP_NAME Name of the application
defined in

lsb.applications

String LSF_APP_NAME="boa"

LSF_JOB_ENV Environment variable for
the LSF job

all, var1=value1,
var2=value2

LSF_JOB_ENV="all"

LSF_JOB_DEFAULT
_MEM_REQ

Percentage of physical
memory required for

each LSF job

Number LSF_JOB_DEFAULT
_MEM_REQ=50

Elements description

Table 16. Elements description of the LSF job configuration

Configuration elements Description Format Default

LSF_JOB_TYPE Type of the job String LSF_JOB
_TYPE="docker"

LSF_APP_NAME Name of the application
defined in

lsb.applications

String LSF_APP_NAME="boa"

LSF_JOB_ENV Environment variable for
LSF job

all, var1=value1,
var2=value2

LSF_JOB_ENV="all"

LSF_JOB_DEFAULT
_MEM_REQ

Percentage of physical
memory required for

each LSF job

Number LSF_JOB_DEFAULT
_MEM_REQ=50

Configuring NGINX
The BOA Appliance ships NGINX, which provides high performance reverse proxy and web server
functionality. This section discusses the role of NGINX in BOA and the configuration choices you need to
make when configuring NGINX for your environments

External Traffic Flows and NGINX:
All external traffic entering or exiting the BOA Appliance host goes through NGINX. External traffic here
references communication flows between the BOA Appliance host and other components not residing on
the BOA Appliance host.

The systems involved in these flows are:

• The BOA Appliance host where the BOA backend components (including NGINX) are running
• Web browsers on end user and administrator desktops and laptops
• The systems where the BOA SDK client-based experiment programs are running. These would typically

be nodes on or with access to an HPC cluster

External traffic in the BOA system can be divided into several categories. These are highlighted in the
following table:

Chapter 1. Deployment Guide 25

Table 17.

External traffic Description Protocol NGINX port

BOA server API traffic
from BOA SDK client

programs

These are the API calls
made from the BOA SDK

to the BOA server on
behalf of client SDK
programs. Examples

include calls to create
and run experiments on

BOA server.

HTTP nginx.http.port

HTTPS nginx.https.port

BOA server API traffic
from BOA experiment

viewer in browser

The experiment viewer
is a JavaScript

application running in a
web browser. It invokes
the BOA server API for
operations like listing

experiments for a user
or triggering a sample

experiment.

HTTP nginx.http.port

HTTPS nginx.https.port

MQTT publish -
subscribe topic

notifications between
BOA server and BOA
SDK client programs

The BOA SDK subscribes
to notifications from the

BOA server for
information such as
parameters sets and
explanation results
which are published

asynchronously as they
are calculated by the

BOA server.

MQTT over Web Sockets nginx.http.port

MQTT over Web Sockets
with TLS

nginx.https.port

MQTT publish -
subscribe topic

notifications between
BOA server and BOA
experiment viewer in

browser

These are the same sort
of

asynchronousnotificatio
ns as with the BOA SDK
client programs. They
allow the experiment
viewer to display the

latest experiment status
and results as the

optimizations are carried
out on the BOA backend.

MQTT over Web Sockets nginx.http.port

MQTT over Web Sockets
with TLS

nginx.https.port

BOA admin server API
traffic from BOA admin

UI in browser

The BOA admin user
interface (UI) is a

JavaScript application
running in a web

browser. Examples
include the admin UI

invoking the BOA admin
server API to query

operational status of the
various services in BOA,

to extract logs, and to
trigger action against

those services.

HTTP nginx.http.port

HTTPS nginx.https.port

26 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

MQTT over Web Sockets puts an HTTP/HTTPS wrapper around the binary MQTT protocol. This makes it
appropriate for configurations where network policies prohibit servers to expose any ports otherthan port
80 (HTTP) and 443 (HTTPS).

When planning your BOA deployment, you need to consider whether you want BOA external traffic to use
HTTP, HTTPS, or both protocols.

In the NGINX portion of the BOA configuration file, there are two important configuration elements:

• The nginx.http.port element specifies the port number used for all HTTP and MQTT over web
sockets external traffic.

• The nginx.https.port element specifies the port number used for all HTTPS and MQTT over web
sockets with TLS external traffic.

If you want your external traffic to use HTTP, then you must open the port specified by
nginx.http.port on the BOA appliance so that browser systems and systems running BOA SDK client
can communicate over that port with the BOA appliance.

If you want your external traffic to use HTTPS, then you must open the port specified by
nginx.https.port on the BOA appliance so that browser systems and systems running the BOA SDK
client can communicate over that port with the BOA appliance.

The BOA Configuration Tool will configure NGINX so that the port identified by nginx.https.port uses
TLS-based transport encryption.

BOA Appliance has no other port or protocol requirements other than for the standard HTTP and HTTPS
ports.

Sample configuration
The following screen shows a sample of configuring NGINX for BOA:

nginx:
 http:
 port: 80
 https:
 port: 443
 ssl_policy: gen_self_signed

Element Description
The following table describes the job manager-related configuration elements.

Table 18. Description of the job manager-related configuration elements

Configuration element Description Format Validation

nginx Nests the set of
elements associated

with NGINX

N/A N/A

nginx.http Nests the set of
elements associated
with the NGINX HTTP

port

N/A N/A

nginx.http.port Specifies the port
exposed on NGINX for
HTTP external traffic

Must be a valid TCP/IP
port number

Validates that an integer
value between 1 and

65535 is specified

nginx.https Nests the set of
elements associated

with the NGINX HTTPS
port

N/A N/A

Chapter 1. Deployment Guide 27

Table 18. Description of the job manager-related configuration elements (continued)

Configuration element Description Format Validation

nginx.https.port Specifies the port
exposed on NGINX for
HTTPS external traffic

Must be a valid TCP/IP
port number

Validates that an integer
value between 1 and

65535 is specified

nginx.https.ssl_policy Specifies whether BOA
Configuration Tool
should generate

SSL/TLS certificates and
key or you will supply

your own. More details
on SSL/TLS in the next

section

gen_self_signed or
cust_provided

Validates that one of the
allowable policies is

specified

Note: NGINX is always configured to expose both an HTTP port and an HTTPS port from the NGINX
container to the BOA Appliance host. If you want to use HTTP only or HTTPS only, you can simply elect
not to expose the other port using your OS firewall.

Configuring SSL/TLS
As discussed in the NGINX section, all external traffic in the BOA system is routed through NGINX over
the ports specified with the nginx.http.port or nginx.https.port configuration elements.

The nginx.https.port is always configured for TLS-based transport encryption. This section discusses
the options for configuring that encryption in BOA.

The nginx.https.ssl_policy configuration element specifies which option to use. The values of the
nginx.https.ssl_policy you can specify are:

• gen_self_signed - Allow the BOA configuration tool to generate self-signed SSL/TLS certificates and
keys which are then used to configure transport encryption on the port in NGINX.

• cust_provided – You supply your own SSL/TLS files which are then used to configure transport
encryption on the port in NGINX.

Using SSL/TLS Files Generated by BOA:
When you specify a value of gen_self_signed for the nginx.https.ssl_policy configuration element, BOA
Configuration Tool will generate the following files in your deployment under the BOA_INSTALL_DIR/
deployment/<deployment-name>/config/ssl directory:

Table 19. File and usage

File name Usage

ca.key This contains a private key generated for the CA. It
is used to sign the CA certificate.

ca.crt This contains the CA certificate file.

server.key This contains a private key generated for the BOA
server.

server.crt This contains the server certificate for the BOA
server. This certificate is signed by the generated

ca.key.

Common Name and Subject Alternate Names:
The BOA server certificate is created with configuration information extracted from the
boa_appliance.fqdn and boa_appliance.ip_address configuration elements. This section describes how
these configurations contribute to the certificate.

28 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Correct certificate verification requires that these values be accurate as they contribute to the common
name and subject alternative names (SANs) used to create the certificate. By default these values are
derived by invoking OS commands. You can override the values by modifying the boa_config.yml input file.

The X509 common name attribute is set from the value of the boa_appliance.fqdn configuration element.

A subject alternative name is added to the certificate for the IP address specified in the
boa_appliance.ip_address configuration element.Using Your Own SSL/TLS Files If your organization
already employs its own certificate authority for the generation of X509 certificate for use on your servers,
you may already have existing certificate and key files with which you wihst ot configure transport
encryption in BOA.

In order to do this, you need to:

• Specify a value of cust_provided for the nginx.https.ssl_policy configuration element.
• Copy your SSL/TLS files to your BOA deployment under the BOA_INSTALL_DIR/deployment/

<deployment-name>/config/ssl directory using the same naming convention in the above table for your
CA and server certificates and keys.

During configuration, the BOA Configuration Tool will validate the existence of the customer-provided
files. However, no validation or verification of the customer-provided files is performed.

If your CA certificate includes one or more intermediate certificates, the certificate you provide under
should be a CA bundle. A CA bundle is a file that contains root and intermediate certificates. The end-
entity server certificate along with a CA bundle constitutes the certificate chain.

As with a CA certificate generated by the BOA Configuration Tool, you need to ensure that the CA
certificate you provide for use in BOA is installed as a trusted CA certificate on each system running a BOA
SDK client program or each system with a browser using the BOA Admin UI web application.

Configuring MongoDB
The BOA Appliance uses MongoDB to store its persistent data model. This includes information about
experiments, results of the optimizations, explanation results for the experiments, and so on. This section
details how MongoDB is configured.

Sample Configuration:

mongo:
 admin_user: mongoadmin
 admin_password: secret
 host_port: 27017

Element Descriptions
The following table describes the MongoDB-related configuration elements:

Table 20. MongoDB configuration element

Configuration elements Description Format Validation

mongo Nests the set of
elements associated

with MongoDB.

N/A N/A

mongo.

admin_user

The username of the
administrative user for

the BOA MongoDB. This
is used to create an
initial administrative
user when the BOA

MongoDB is initialized.

Valid MongoDB
username.

None

Chapter 1. Deployment Guide 29

Table 20. MongoDB configuration element (continued)

Configuration elements Description Format Validation

mongo.

admin_password

The password of the
administrative user for

the BOA MongoDB. This
is used to create an
initial administrative
user when the BOA

MongoDB is initialized.

Valid MongoDB
password.

None

mongo.

host_port

This is the port that is
exposed on the BOA

Appliance host.
Changing this value does

not impact how the
internal BOA

microservices connect
to MongoDB. It does

apply to how non-BOA
external programs like

backup utilities and
MongoDB user

interfaces connect to
the BOA MongoDB

instance.

Must be a valid TCP/IP
port number.

Validates that an integer
value between 1 and
65535 is specified.

Note:

• MongoDB database files are stored in a Docker volume.
• Unless you have a need to connect to the BOA MongoDB instance from systems outside the BOA

Appliance host, the port specified in mongo.host_port need not be exposed to external systems via
firewall rules.

30 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Chapter 2. Administration Guide
These topics provide a list of the tasks you can perform to administer the IBM Bayesian Optimization
Accelerator.

Log in to the administration GUI
You must log in with valid credentials to work in the BOA administration graphical user interface (GUI).

Logging in to the administration GUI
The user must use an existing username and password to log in to the administration GUI.

1. Open the administration GUI in your web-browser.
2. To log in to the administration GUI, enter the username and click the Continue button.
3. Enter the password and click the Log in button.

A new session is created which is valid for 24 hours. After login for the first time, the web-browser
displays the configuration screen. Afterward, the web-browser displays the dashboard.

Reset admin login password
Admin user can reset or change the login password using a shell script as described below:

• Script name: reset_pwd_admin.sh
• Directory Path : /boabuild/installer/bin

Run the following command:

./reset_pwd_admin.sh

Note: This script will hit the API internally. Before running the script, update the port on to which BOA
services are running. The default port value is 80.

Logging out of the administration GUI
You can log out from the administration GUI by clicking the sign-out option in the top navigation bar. After
you click the log-out option, the current session will be expired.

© Copyright IBM Corp. 2021 31

Navigating the dashboard
The dashboard shows summary of User Statistics, Server Utilization, and BOA Application Services Status.
You can also view summary of logs. You can click an icon or a label to go to the respective page. For
example, if you click the Users label in the statistics section, the browser displays the Users page.

Figure 3. BOA administration dashboard

From the top navigation pane, you can go to the Services, User & Experiment, Logs and Events,
Maintenance and Update, and Configuration pages.

Statistics
You can view summary statistics of Users, Whitelisted Users, Experiments, Experiments Running,
Services, and Services Running.

Server Utilization
You can view status of Memory, CPU and Disk utilization of the server.

Logs
You can view summary of logs for each service. To view details of logs, click the View All label.

BOA Application Services Status
You can view details of CPU, Memory, Memory Usage, ID, and Status of all running services. To view
details of services status, click the View All label.

32 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Working in the administration GUI
From the top navigation pane, you can navigate to Services, User & Experiment, Logs and Events,
Maintenance and Update, and Configuration pages.

Services
In the Services page, you can view the details of all services with their status (up or down), also other
services related statistics. The details that are displayed in the page are: Name, CPU %, Memory %,
Memory Usage, ID, Net I/O, Block I/O, Status.

• To restart all services:

1. Click the Restart All button.
2. A message box prompts you for the confirmation, click the OK button. All services restarts. The

graphical user-interface (GUI) services that you are using also restarts, and the web-browser
displays the Login page.

• To stop all services:

1. Click the Stop All button.
2. A message box prompts you for the confirmation, click the OK button. All the running services stops.

The graphical user-interface (GUI) services that you are using also stops and the web-browser
displays the Login page.

Note: If you stop all services, all the services along with this admin interface will be stopped, and you
need to re-start all the services from the CLI. To restart all services, you can run the
boa_service_up.sh shell script in the /boabuild/installer/bin directory. Run the script from
the directory which contains the docker-compose.yml file. Run the following command:

./boa_service_up.sh

Users & Experiments
In the Users and Experiments page, you can view users and experiments details. You can view statistics of
Total Users, Total Experiments, Running Experiments, and Completed Experiments. Also, you can view
details of all registered users in the tabular format with their Name, User Id, Total Experiments,
Completed, In Progress, Failed experiments.

You can also navigate to view and add White-listed Users page.

• Click the View & Add Whitelisted User label to navigate to the Whitelisted User page.
• To whitelist a user:

1. Click the Add user button. The web-browser displays a modal window.
2. Enter the email address of the user, then click the Add button. The email address is white-listed.

Note: White-listed users include the registered users and existing white-listed users.

Logs & Events
In the Logs and Events page, you can view the list of services and their brief description. You can also view
the raw logs individually by clicking on the view log link. Also, you can download all the service log files in
the form of zipped folder by clicking the download logs button.

• To view details of a raw log or event, click the View Logs link. The web-browser displays the logs details
page. This page displays the latest one thousand lines of logs of a service.

• To download all the services logs files in the form of zipped folder, click the Download Logs button.

Chapter 2. Administration Guide 33

Maintenance & Updates
In the Maintenance & Update page, you can set maintenance mode On or off. You can also set
maintenance message which will be visible on the Experiment Viewer for the notification to all the BOA
users. To switch On the maintenance mode, it is necessary that a message should be set already.

• To set the maintenance mode On or Off, admin has to toggle the switch. According to the mode, the
message will be displayed above the toggle switch.

• To set the message, write a message in the Message box, then click the Set Message button. Once the
message has been set, the Set Message will get converted to Update Message. Then the message will
be displayed in the Experiment Viewer.

• To remove the message, the maintenance mode should be off, then only the user will be able to click on
the Remove Message button otherwise the button will be disable in the case of maintenance mode is
on.

Configuration
You can view the default BOA configurations for MongoDB, MQTT, LSF and Web Server Settings in the
Configuration page. These configuration details are read only.

34 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Chapter 3. BOA SDK Guide
This is a python client software development kit (SDK) for IBM Bayesian Optimization Accelerator.

The BOA SDK has been designed to be simple to use, but flexible in the range of configurations available
for tailoring the optimization. This is achieved using the BOaaSClient object, which facilitates all
communication with the BOA server. The optimization configuration is handled via a Python dictionary (or
equivalently a JSON file).

Package boa_python

Module sdk

Submodule BOaaSClient

SDK API

BOaasClient construction and initialization
Set the universal resource locator (URL) for the BOA instance. This is a prerequisite for the API. The URL is
placed as the BOaaSClient object. The following screen displays the BOaaSClient object format:

boa_instance = BOaaSClient(host)

• The host element is a valid URL to the running BOA instance
• The boa_instance is returned object to represent the BOA instance

The user commands
This topic describes the method of registering a new user, log in a user, and log out a user by using the
BOA API.

Register a new user with BOA

boa_instance.register(user_dict)

The register call maps to the REST API call /users/register. The register call takes in a dictionary of
key-value pairs that includes the following information:

Table 21. User dictionary

Key Value (description)

_id Email address of the user

name Full name of the user

password Password for the user

confirm_password Password again to confirm

Log in a user

user_token = boa_instance.login(user_dict)

© Copyright IBM Corp. 2021 35

This element authenticates a registered user. The login call maps to the REST API call /users/login.
The login call takes in a dictionary of key-value pairs that includes the following information:

Table 22. User dictionary

Key Value (description)

_id Email address of the user

password Password for the user

A token is returned from the login request, which must be retained to authenticate future requests.

Logout a user

boa_instance.logout(user_dict)

This element revokes a login token of a registered user. The logout call maps to the REST API call /
users/logout. The logout call takes in a dictionary of key-value pairs that includes the following
information:

Table 23. User dictionary

Key Value (description)

_id Email address of the user

token An authentication token received from the login
event

Experiment configuration and execution
This topic describes configuring query, create an experiment, Experiment dictionary, domain dictionary,
Gaussian process kernel dictionary, sampling function dictionary, initialization type dictionary, random
initialization type dictionary, stop an experiment, delete an experiment, get the next parameter set,
response dictionary, sample status dictionary, add a new observation, and run the BOA appliance.

Configuration Query

boa_instance.config()

This element queries the running instance for its configuration. This returns the supported kernels and
samplers of the BOA API. The config call maps to the REST API call/config.

Create an Experiment

experiment_id = boa_instance.create_experiment(user_dict, experiment_dict)

This element create a new Experiment for a registered user with the specified configuration. The
create_experiment call maps to the REST API call /experiments/create. The
create_experiment call takes in a dictionary of key-value pairs that includes the following information:

Table 24. User dictionary

Key Value (description)

_id Email address of the user

token An authentication token received from login

36 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Experiment dictionary
The Experiment dictionary is made up of a name, optimization type, and a set of dictionaries that define
which kernels and sampling functions make up the Experiment.

Table 25. Experiment dictionary

Key Value (description)

name Experiment name

optimization type min or max

domain Experiment domain dictionary

gaussian_process Gaussian process kernel dictionary

sampling_function Sampling function dictionary

initializaiton Initialization type dictionary

Domain Dictionary
Experiments must contain one domain per parameter.

Table 26. Domain dictionary

Key Value (description)

name Experiment name

min Minimum value of the design space

max Maximum value of the design space

step Incremental value of the design space

Gaussian process kernel dictionary
This dictionary is used to configure the Gaussian process kernel that is used by the Experiment. Kernels
have unique IDs and can be retrieved by using the config() command.

Table 27. Gaussian process kernel dictionary

Key Value (description)

kernel_func Specifies how the GP models the correlation
between different points in the data set

scale_y Specifies whether to scale the outputs when fitting
the GP

scale_x Specifies whether to scale the input (or x) values.

Probabilistic Backpropagation neural network (PBP) dictionary

Table 28. Gaussian process kernel dictionary

Key Value (description)

batch_size Sets the mini-batch size for the PBP network

scale_y Specifies whether to scale the outputs when fitting
the GP

scale_x Specifies whether to scale the input (or x) values.

Chapter 3. BOA SDK Guide 37

Sampling function dictionary
This dictionary is used to configure the sampling function of the Experiment. Sampling functions have
unique IDs and can be retrieved by using the config() command.

Table 29. Sampling function dictionary

type Specifies what type of acquisition function to use

epsilon This variable controls the degree

to which the optimizer will tend to exploit known
'good' areas of the domain (low epsilon), or favor

exploring less well-known areas of the domain
(high epsilon).

optimize_acq Set to True.

outlier Used only for the 'adaptive' acquisition functions

bounds Contains the upper and lower bound for each
parameter in the list.

scale To scale the either output or input values

Initialization type dictionary
This dictionary is used to configure the initialization type of the Experiment. Kernels have unique IDs and
can be retrieved by using the config() command.

Table 30. Initialization type dictionary

Key Value (description)

type random or observations

random Random dictionary

Random initialization type dictionary

Table 31. Random initialization type dictionary

Key Value (description)

no_samples Number of the random samples

seed Defines the seed element

Stop an Experiment

boa_instance.stop_experiment(experiment_id, user_token)

This element stops a specified experiment for a registered user. The stop_experiment call maps to the
REST API call /experiments/stop.

Delete an Experiment

boa_instance.delete_experiment(experiment_id, user_token)

This element deletes a specified experiment for a registered user. The stop_experiment call sends a
DELETE to the REST API call /experiments/with_token.

38 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Get the next parameter set

response_dict = boa_instance.next_parameter_set(experiment_id, user_token)

This element retrieves and evaluates the next parameter set of an experiment. Before retrieve and
evaluate an experiment, the experiment must be initialized. The next_parameter_set call maps to the
REST API call /experiments/next_parameter_set. The next_parameter_set call is blocked until
the observation is completed.

Response dictionary

Table 32. Response dictionary

Key Value (description)

next_parameter_set Parameter set dictionary

sampler_status Sampler status dictionary

Sample status dictionary

Table 33. Sample status dictionary

Key Value (description)

initialized True or false on the sample initialized

number_of_iterations The number of completed iterations

generating_prior True or false

Add observation

boa_instance.new_observation(experiment_id, new_obsv_dict, user_token)

This element inserts a new observation for a specific experiment into the database. Before inserting a
new observation, you must initialize the experiment. The new_observation call maps to the REST API
call /experiments/new_observation. The new_observation call triggers a new iteration.

Run BOA

boa_instance.run(experiment_id, user_token, evaluation_function, constraint_function, explain,
no_epochs)

To run BOA, complete the following steps:

1. Get the next parameter set to try.
2. Evaluate y by using the specified evaluation function.
3. Insert the new observation into BOA until the wanted number of iterations is reached. The
evaluation_function and constraint_function elements are user-defined.

Camelback example
The camelback example is a two-dimension optimization problem that optimizes the six-hump camelback
function.

This function has global minima.

f(x) = -1.0316 at x = (0.0898, -0.7126) and (-0.0898, 0.7126)

Chapter 3. BOA SDK Guide 39

Command-line input to run camelback_example.py

usage: python camelback_example.py [-h] [--hostname BOA_SERVER]
 [--protocol {http, https}] [--port PORT]
 [--epochs EPOCHS] [--ca-cert-path CA_CERT_PATH]

optional arguments:
 -h, --help show this help message and exit
 --hostname BOA_SERVER, -ho BOA_SERVER
 Hostname or IP address of BOA server to connect to.
 (default: localhost)
 --protocol {http, https}, -pr {http, https}
 Protocol to use to connect to BOA server. (default:
 http)
 --port PORT, -p PORT Port to connect to on BOA server. (default: 80)
 --epochs EPOCHS, -e EPOCHS
 Number of epochs to perform. (default: 40)
 --ca-cert-path CA_CERT_PATH, -c CA_CERT_PATH
 Path to the CA certificate file to use for https
 protocol. (default: None)

Sample Camelback example python file
A sample camelback example is shown below:

"""
Licensed Materials - Property of IBM
“Restricted Materials of IBM”

5765-R17

© Copyright IBM Corp. 2020 All Rights Reserved.
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp
"""

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
import os, sys
from common.boa_examples_utils import BoaExamplesUtils
from boaas_sdk import BOaaSClient
import signal

example_description="""
 This example demonstrates basic BOA usage for a simple optimization problem.

 The BOA SDK has been designed to be simple to use, but flexible in the range of
 configurations available for tailoring the optimization. This is achieved using
 the BOaaSClient object, which facilitates all communication with the BOA server.
 The optimization configuration is handled via a Python dictionary (or
 equivalently a JSON file).

40 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

 The camelback example is a two dimensional optimization problem that optimizes
 the six humped camelback function. This function has global minima
 f(x) = -1.0316 at x = (0.0898, -0.7126) and (-0.0898, 0.7126))
 """

"""
Perform parsing of common commandline arguments shared by all BOA examples.
"""
args = BoaExamplesUtils.parse_commandline_args(example_description,default_epochs=40)
hostname = BoaExamplesUtils.get_connection_url(args)
print("Connecting to host: {}".format(hostname))
boaas = BOaaSClient(host=hostname,ca_cert_path=args.ca_cert_path)

def camelback6(x):
 # Six-hump camelback function
 x1 = x[0]
 x2 = x[1]
 f = (4 - 2.1 * (x1 * x1) + (x1 * x1 * x1 * x1) / 3.0) * (x1 * x1) + x1 * x2 + (-4 + 4 * (x2 *
x2)) * (x2 * x2)
 return f

experiment_config = {
 "name": "Reg camelback function",
 "domain": [
 {
 "name": "x1",
 "min": -2,
 "max": 2,
 "step": 0.01
 }, {
 "name": "x2",
 "min": -1,
 "max": 1,
 "step": 0.01
 }
],
 "model": {"gaussian_process": {
 "kernel_func": "Matern52",
 "scale_y": True,
 "scale_x": False,
 "noise_kernel": True,
 "use_scikit": True
 }},
 "optimization_type": "min",
 "initialization": {
 "type": "random",
 "random": {
 "no_samples": 3,
 "seed": None
 }
 },
 "sampling_function": {
 "type": "expected_improvement",
 "epsilon": 0.03,
 "optimize_acq": False,
 "outlier": False,
 "bounds": None
 }

}

user = {"_id": "boa_test@test.com", "password": "password"}
user_login = boaas.login(user)

if user_login == None:
 user = {"_id": "boa_test@test.com", "name": "BOA Test",
 "password": "password", "confirm_password": "password"}
 boaas.register(user)
 user_login = boaas.login(user)

print(user_login)
user_token = user_login["logged_in"]["token"]
print("user token")
print(user_token)
create_exp_user_object = {"_id": user["_id"], "token": user_token}
experiment_res = boaas.create_experiment(create_exp_user_object, experiment_config)
print(experiment_res)
experiment_id = experiment_res["experiment"]["_id"]

Chapter 3. BOA SDK Guide 41

def signal_handler(signal, frame):
 """
 Function to handle Ctrl+C signal
 """

 print("Aborting...")
 boaas.abort(experiment_id, user_token)
 sys.exit()

Catch ctrl+c signal to invoke its signal handler
signal.signal(signal.SIGINT, signal_handler)

boaas.run(experiment_id=experiment_id, user_token=user_token, func=camelback6,
no_epochs=args.epochs, explain=False)
best_observation = boaas.best_observation(experiment_id, user_token)
print("best observation:")
print(best_observation)
boaas.stop_experiment(experiment_id=experiment_id, user_token=user_token)

Authenticate a registered user
The login call maps to the REST API call /users/login user_login = boaas.login(user). A
sample of the authenticate a registered user object is displayed in the following example.

if user_login == None:
 user = {"_id": "boa_test@test.com", "name": "BOA Test",
 "password": "password", "confirm_password": "password"}

 # Register a new user. The Register call maps to REST API call /users/register
 boaas.register(user)

 user_login = boaas.login(user)

print(user_login)
user_token = user_login["logged_in"]["token"]
print("user token")
print(user_token)
create_exp_user_object = {"_id": user["_id"], "token": user_token}

Authenticate a registered user
The login call maps to the REST API call /users/login user_login = boaas.login(user). A sample of the
authenticate a registered user object is displayed in the following example.

if user_login == None: user = {"_id": "boa_test@test.com", "name": "BOA Test",
 "password": "password", "confirm_password": "password"}

 # Register a new user. The Register call maps to REST API call /users/register
 boaas.register(user)

 user_login = boaas.login(user)
print(user_login)
user_token = user_login["logged_in"]["token"]
print("user token") print(user_token)
create_exp_user_object = {"_id": user["_id"], "token": user_token}

Create an experiment for a registered user with the specified configuration
The create_experiment call maps to REST API call /experiments/create. A sample of the create
an experiment for a registered user with the specified configuration object is displayed in the following
example.

experiment_res = boaas.create_experiment(create_exp_user_object, experiment_config)

print(experiment_res)
experiment_id = experiment_res["experiment"]["_id"]

42 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Run BOA
Get the next parameter set to try, and evaluate y by using the specified evaluation function. Then, insert
the new observation into BOA until the wanted number of iterations has been reached. A sample of the
run BOA object is displayed in the following example.

boaas.run(experiment_id=experiment_id, user_token=user_token, func=camelback6, no_epochs=4,
explain=False)

Print the best minimum or maximum observation of all the observations set
This API call maps to the REST API call /experiments/best_pbservation. A sample of the print the
best minimum or maximum observation of all the observations set object is displayed in the following
example.

best_observation = boaas.best_observation(experiment_id, user_token)
print("best observation:")
print(best_observation)

Stop an experiment for a registered user
The stop_experiment call maps to the REST API call /experiments/stop. A sample of the stop an
experiment for a registered user object is displayed in the following example.

boaas.stop_experiment(experiment_id=experiment_id, user_token=user_token)

The following screen displays a sample output of running a BOA experiment:

Chapter 3. BOA SDK Guide 43

{'_id': 'boa_test@test.com', 'logged_in': {'status': True, 'token': '5c806a36-2b01-11eb-ab4c-
a9d04ca0275f'}, 'user': {'_id': 'boa_test@test.com', 'logged_in': {'status': True, 'token':
'5c806a36-2b01-11eb-ab4c-a9d04ca0275f'}, 'name': 'boa_test', 'role': 'expuser', 'whitelist':
'true'}}
user token
5c806a36-2b01-11eb-ab4c-a9d04ca0275f
{'experiment': {'_id': '92c7a0be-2b01-11eb-a3b0-f9d9ecbd5771', 'created_at': 1605857132245,
'domain_id': '92c7a3b6-2b01-11eb-a3b0-f9d9ecbd5771', 'initialization': {'random': {'no_samples':
3, 'seed': None}, 'type': 'random'}, 'model': {'gaussian_process': {'kernel_func': 'Matern52',
'noise_kernel': True, 'scale_x': False, 'scale_y': True, 'use_scikit': True}}, 'n_sample': 1,
'name': 'Reg camelback function', 'next_parameter_set': {'X': [[]]}, 'observations_id':
'92c7a348-2b01-11eb-a3b0-f9d9ecbd5771', 'optimization_type': 'min', 'sampler_config':
{'generating_prior': False, 'mqtt': {'error_notifications_topic': '92c7a1f4-2b01-11eb-a3b0-
f9d9ecbd5771/error', 'host': '172.20.181.37', 'lsf_notifications_topic': '92c7a1f4-2b01-11eb-a3b0-
f9d9ecbd5771/lsf', 'new_explanation_notifications_topic': '92c7a1f4-2b01-11eb-a3b0-f9d9ecbd5771/
new_explanation', 'new_observation_notifications_topic': '92c7a1f4-2b01-11eb-a3b0-f9d9ecbd5771/
new_observation', 'new_y_notifications_topic': '92c7a1f4-2b01-11eb-a3b0-f9d9ecbd5771/new_y',
'next_constraint_X_function_notifications_topic': '92c7a1f4-2b01-11eb-a3b0-f9d9ecbd5771/
next_constraint_X_function', 'next_constraint_X_function_notifications_topic_ui':
'92c7a1f4-2b01-11eb-a3b0-f9d9ecbd5771/next_constraint_X_function_ui',
'next_constraint_X_model_notifications_topic': '92c7a1f4-2b01-11eb-a3b0-f9d9ecbd5771/
next_constraint_X_model', 'next_parameter_set_notifications_topic': '92c7a1f4-2b01-11eb-a3b0-
f9d9ecbd5771/next_parameter_set', 'port': '80', 'sampler_status_notifications_topic':
'92c7a1f4-2b01-11eb-a3b0-f9d9ecbd5771/sampler_status', 'subscription_topic_base':
'92c7a1f4-2b01-11eb-a3b0-f9d9ecbd5771', 'url': 'mqtt://172:80', 'ws_https_url': 'wss://172:443/
mqttws/', 'ws_port': '80', 'ws_url': 'ws://172:80/mqttws/'}, 'status': 'initializing'},
'sampling_function': {'batch_sampling': {'use': False}, 'bounds': None, 'epsilon': 0.03,
'explain': None, 'optimize_acq': False, 'outlier': False, 'type': 'expected_improvement'},
'type': 'default', 'user_id': 'boa_test@test.com', 'y_best': None}, 'status': 'Experiment
created'}
Attempting to connect to message broker at URL ws://172:80/mqttws/...
Connected to message broker with result code 0
Calculating the next y value for suggested parameters...

Calculating the next y value for suggested parameters...

Calculating the next y value for suggested parameters...

Calculating the next y value for suggested parameters...

Calculating the next y value for suggested parameters...

Calculating the next y value for suggested parameters...

Calculating the next y value for suggested parameters...

Calculating the next y value for suggested parameters...

Calculating the next y value for suggested parameters...

Calculating the next y value for suggested parameters...

Calculating the next y value for suggested parameters...

Calculating the next y value for suggested parameters...

Calculating the next y value for suggested parameters...

Calculating the next y value for suggested parameters...

Completed 40 iterations of Bayesian Optimisation.
40 iterations of Bayesian Optimisation have been completed in total for this experiment.
best observation:
{'best': {'X': [-0.12999999999999834, 0.7100000000000015], 'y': -1.0252309320636674}}

44 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Chapter 4. User Guide

Getting Started with BOA

Common Optimization Conceptual Terminology
• Design Variables (parameters): Design Variables are the parameters that are chosen to describe the

design of a system. Objective function and constraints must be expressed as a function of design
variables (or design vector X). Also, these variables are “controlled” by the designers.

• Objective Function: An objective function is the output that you want to maximize or minimize. It is
what we will measure designs against to decide which option is best. The objective function can be
thought of as the goal of your generative design process.

• Constraints: The constraints represent some functional relationships among the design variables and
other design parameters satisfying certain physical phenomenon and certain resource limitations. The
nature and number of constraints to be included in the formulation depend on the user. Constraints may
have exact mathematical expressions or not.

• Design space: Placing the design variables along orthogonal axes defines a design space, or set of all
possible design options. Each point in the design space corresponds to a chosen design.

Creating a user account
Whitelisted Users can register themselves on Experiment viewer UI and through SDK client. Admin user
can only whitelist the users using the user whitelisting feature of the Admin GUI.

Running a sample example
For information on running sample experiment with BOA Python SDK, refer Annexure - II

Experiment configuration
BOA uses a configuration JSON file or an equivalent Python dictionary to configure the optimization. This
topic describes the parameters used for configuration.

name
The name of your optimization experiment.

domain
The domain is the set of parameters that you want to search through to find the optimum parameters.
For an engineering problem this might be the list of possible designs for a component, such as the
engine of a car. For a chemical manufacturing problem, this could be the list of possible combinations
of ingredients.

There are three ways to define the domain:
Grid

To define the domain as a grid, we specify the name of each parameter, a minimum value, a
maximum value, and a step size. For example:

"domain": [
 {
 "name": "x1",
 "min": -2,
 "max": 2,
 "step": 0.01
 }, {
 "name": "x2",
 "min": -1,

© Copyright IBM Corp. 2021 45

 "max": 1,
 "step": 0.01
 }
]

Domain upload
Defines the domain as a simple list of parameter values that you want to search over. For example,
you could use NumPy to generate a list of random two-dimensional parameters:

python domain = np.random.rand(500, 2).tolist() "domain": domain

Bounds
Defines the upper and lower bound for each parameter, without a step size. This is useful for
problems where you do not want to generate all of the parameter values to try. To use bounds,
define the domain using only the parameter names. For example:

python "domain": [{ "name": "x1" }, { "name": "x2" }]

You must also set the bounds and optimize_acq fields on the sampling_function field.
bounds

Contains the upper and lower bound for each parameter in the list.
optimize_acq

Set to True.

Example:

python "sampling_function": { "optimize_acq": True, "bounds": [[-2,2],[-1,1]], ...
 }

model
Defines the surrogate model to use, which can be one of these options:
Gaussian Process (GP)

The standard for Bayesian optimization. The configuration for a GP is as follows:

"model":{"gaussian_process": {
 "kernel_func": "Matern52",
 "scale_y": True,
 "scale_x": False,
 "noise_kernel": True,
 "use_scikit": True,
 "optimizer": "LBFGS"
 }}

kernel_func
Specifies how the GP models the correlation between different points in the data set. BOA
currently supports the following kernel functions: SquaredExponential, Matern32, and
Matern52.

scale_y
Specifies whether to scale the outputs when fitting the GP, and whether to use scaled values
when computing the acquisition function. If you choose not to scale the output and we have
very large magnitude values, BOA may prematurely terminate optimization. It is generally
recommended that this parameter is set to True.

scale_x
Specifies whether to scale the input (or x) values. It is generally recommended that this is set
to False.

noise_kernel
Specifies whether to include a noise kernel in our GP. When set to True, a white noise kernel
is added to the GP in order to model noise in our data. This is best practice for most real-world
optimization problems, as there is almost always noise in real-world data.

46 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

use_scikit
Allows switching between the IBM GP Pro GP library and the open source scikit-learn GP. This
is useful for debugging issues between different GP libraries.

use_scikit=True indicates BOA uses scikit-learn Gaussian Process Algorithm

use_scikit=False indicates BOA uses IBM Gaussian Process PRO library

Note: PTF1 for Fix Pack 1.1.0.1 only supports use_scikit as True, which supports only open
source scikit-learn Gaussian Process Algorithm.

The following are the important considerations have been taken to the PTF1 for Fix Pack
1.1.0.1 are given below:

• If use_scikit=True, then BOA experiment will run as it is expected.
• If use_scikit = False, then BOA experiment will stop and throws an exception shown below:

– This version of BOA does not support use_scikit as False. Please set use_scikit as True in
experiment config and re-run the experiment by setting the use_scikit as True, you will be
using Gaussian Process Model of Scikit Learn library.

If use_scikit parameter is not provided in the BOA experiment configuration, then it considers
as default value of use_scikit which is True.

optimizer
Allows you to select the optimizer used for fitting the GP hyper-parameters. Supported values
are: LBFGS (default), Adam, SGD, Adadelta, Adagrad, ASGD, and RMSprop.

Probabilistic Backpropagation neural network (PBP)
A probabilistic neural network that is useful for problems that involve high dimensionality or a lot
of data. Use the following to configure PBP:

"model":{"PBP": {
 "scale_y": True,
 "scale_x": False,
 "batch_size": 32
 }}

batch_size
Sets the mini-batch size for the s network. A larger mini-batch size can speed up training for
the network, but may negatively impact its generalisation. This parameter is used solely for
PBP and has nothing to do with batch sampling and parallel optimization.
The batch_size should be less than or equal to no_of_random (or initial observations, if
initialization type is Observation) i.e. batch_size<=no_of_random samples otherwise PBP
model won't work.

scale_y
Specifies whether to scale the outputs when fitting the GP, and whether to use scaled values
when computing the acquisition function. If you choose not to scale the output and we have
very large magnitude values, BOA may prematurely terminate optimization. It is generally
recommended that this parameter is set to True.

scale_x
Specifies whether to scale the input (or x) values. It is generally recommended that this is set
to False.

initialization
Specifies how to initialize the optimizer. There are two options: initialization by random samples
(random) or by uploading observations (observations). Random initialization randomly selects
values from the domain, whereas the observation-based initialization allows you to specify a list of
parameter values to initialize the optimizer.

Example of specifying random initialization:

"initialization": {
 "type": "random",

Chapter 4. User Guide 47

 "random": {
 "no_samples": 3,
 "seed": None
 }
 },

no_samples
Specifies the number of samples to use for initialization.

seed
Specifies whether to set the NumPy random seed for the initialization. Setting the seed means you
can start with the same initial samples each time. This can be useful for reproducibility or
debugging issues with the optimization, but generally this should be set to None.

Example of using observations for initialization:

"initialization": {
 "type": "observations",
 "observations": obs
 },

observations
In this example, the observations (obs) is a list where the first element is a list of parameters
(inputs), and the second element is a list of responses (outputs). For example:

obs = [[[0.342234, 0.543677], [1.1464377, 0.535677], [1.324556, 0.934786]],
 [0.435561, 0.5342, 0.532566]]

sampling_function
Specifies how the optimizer will sample from the domain.

type
Specifies what type of acquisition function to use. The acquisition function is core to how Bayesian
optimization functions, and different acquisition functions will result in different optimizer
behaviors.

For standard optimization problems, the Expected Improvement (EI) acquisition function is
typically recommended. Another commonly used acquisition function is Probability of
Improvement (PI). Both of these acquisition functions have an epsilon variable associated with
them.

It is typically advised to use one of the following acquisition functions: expected_improvement,
adaptive_expected_improvement, probablity_improvement, or
adaptive_probability_improvement.

BOA optimizer also supports, epsilon_greedy, maximum_entropy and random_sampler sampler
types but only when design variables domain is defined as Grid (Discrete variables).

epsilon
Some acquisition functions have an associated epsilon variable. This variable controls the degree
to which the optimizer will tend to exploit known 'good' areas of the domain (low epsilon), or favor
exploring less well-known areas of the domain (high epsilon).

BOA provides a further enhancement on this in the form of its adaptive acquisition functions,
which dynamically tune the epsilon value to automatically trade-off between exploration and
exploitation.

scale
Depending on the version of BOA being used, the scale parameter may not be required. If
required, this should always be set to False.

outlier
Used only for the 'adaptive' acquisition functions. If this is set to 'True', outliers are removed
before calculating the new epsilon value.

48 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

constraints
Used for optimization with constraints. For details, see “Optimization with constraints” on page
55.

optimize_acq
Set to True.

bounds
Contains the upper and lower bound for each parameter in the list.

When using batch (or parallel) optimization, a different set of acquisition functions should be used.
See 'Batch Optimization' and the 'hyper_parameter_tuning_batch.py' example.

Example sampling_function configuration:

"sampling_function": {
 "type": "adaptive_expected_improvement",
 "epsilon": 0.03,
 "optimize_acq": False,
 "outlier": False,
 "bounds": None,
 "scale": False
}

explain
Defines the explainability features computed for BOA. If the explain field isn't used, BOA will run
without explainability. PBP model doesn’t support Explanation i.e. explain should be False in the
experiment configuration for all the experiments running with model: PBP:
feature_importance

Whether to compute the feature importance. Values are True and False
feature_interaction

A list of feature interactions to use, one or both of PDP and H_statistic can populate the list.
features_idx

A list.

Example explain field:

"explain": {
 "feature_importance": True,
 "feature_interaction": ['PDP', 'H_statistic'],
 "features_idx": [0,1]
}

batch_sampling
use

Whether to use batch sampling. Values are True or False.
batch_size

The batch size or maximum batch size, depending on type of batch acquisition function used)
type

The type of batch acquisition function used. Values are:
BatchThompsonSampler

batch Thompson sampler
KMeansSampler_EI

k-means clustered expected improvement batch sampler
qEI_CLSampler

Constant Liar batch sampler
qEI_BasicSampler

Basic Batch Sampler
B3Sampler_EI

Budgeted Batch Sampler

Chapter 4. User Guide 49

qEI_KBSampler
Kriging Believer Sampler

Example:

"batch_sampling": {
 "use": True,
 "batch_size": 5,
 "type": "BatchThompsonSampler"
 },

See hyper_parameter_tuning_batch.py for a complete example of how to use batch sampling
with BOA.

Recommend Batch Sampler with BOA optimizer is BatchThompson. All Batch Samplers do not
support domain defined as Bounds (continuous design variables).

safe_initialization
Specifies what happens if the GP optimization fails. This can occur for a number of reasons, such as a
poor choice of kernel or a poor set of initial observations.
True

An error is returned if the GP hyper parameter optimization fails and BOA stops running. This is
the default.

False
A warning is raised if the GP hyper parameter optimization fails, BOA collects a new random
sample of initial observations and tries to run again. The number of retries is set by the
max_tries parameter.

The reason for not retrying by default is that BOA will often be used with expensive evaluations.
Thus, if this were the default behavior, users could incur significant additional cost if BOA kept
trying to regenerate its initial observations upon failure. Typically, the GP fitting can be addressed
by changing the choice of kernel. Thus, careful consideration is advised before setting
safe_initialization to True.

max_tries
When safe_initialization is True, specifies how many times BOA collects a new random
sample of initial observations and re-run GP fitting.

optimization_type
Specifies whether optimization is minimization (min) or maximization (max).

n_sample
Set to 1.

optimizer
Selects the optimizer used if using bounds. This is different from the optimizer parameter
associated with the gaussian_process field. When using bounds, the acquisition function
computed via optimization, rather than by evaluating values over a domain grid. Therefore, it requires
a second global optimizer within BOA. The choices of optimizer are: direct, cobyla, and
basinhopping.

This parameter is only used if bounds has a value other than None, and optimize_acq is True.

Note: Cobyla optimizer is not supported in PTF1 for Fix Pack 1.1.0.1.

Multiple objective optimization
These fields are used only for multiple objective optimization. For more information, see “Multiple
objective optimization” on page 53.
task_weights

How much weight to attribute to each task.
combi_ops

Which operation to use when combining the task information during optimization. This can be
either sum or prod for each task.

50 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

samplers
This is populated with a list, each item of which is a dictionary (or JSON object) defining a sampler
object for each independent task, or objective. As such, each sampler dictionary (or JSON object)
contains the following configuration fields: name, optimization_typ, model,
initialization, and sampling_function, as described above.

Example:

experiment_config = {
 "name": "Multi Object",
 "type": "multi_object",
 "domain": [
 {
 "name": "x1",
 "min": -2,
 "max": 2,
 "step": 0.01
 }, {
 "name": "x2",
 "min": -1,
 "max": 1,
 "step": 0.01
 }
],
 "task_weights": [1,1],
 "combi_ops": ["prod", "prod"],
 "n_sample": 1,
 "samplers": [
 {
 "name": "Camelback",
 "optimization_type": "min",
 "model":{"gaussian_process": {
 "kernel_func": "Matern52",
 "scale_y": True,
 "scale_x": True,
 "noise_kernel": False
 }},
 "sampling_function": {
 "type": "expected_improvement",
 "epsilon": 0,
 "optimize_acq": False,
 "outlier": False,
 "bounds": None,
 "scale": False,
 "print_level": False,
 "run_epsilon": 0
 },
 "initialization": {
 "type": "random",
 "random": {
 "no_samples": 3,
 "seed": None
 }
 }
 },
 {
 "name": "Shifted Camelback",
 "optimization_type": "min",
 "model": {"gaussian_process": {
 "kernel_func": "Matern52",
 "scale_y": True,
 "scale_x": True,
 "noise_kernel": False
 }},
 "sampling_function": {
 "type": "probability_improvement",
 "epsilon": 0.03,
 "optimize_acq": False,
 "outlier": False,
 "bounds": None,
 "scale": False,
 "print_level": False,
 "run_epsilon": 0
 },
 "initialization": {
 "type": "random",
 "random": {
 "no_samples": 3,
 "seed": None

Chapter 4. User Guide 51

 }
 }
 }
]
}

Multi-objective optimization doesn’t support domain defined as Bounds (continuous variables).
Hence, bounds: None should be used, and Domain should be defined as Grid.

See camelback_example_multi-objective.py for a working example of using BOA for
multiple objective optimization.

Complete configuration example
The following is an example BOA configuration for use with the BOA Python SDK:

experiment_config = {
 "name": "Reg camelback function",
 "domain": [
 {
 "name": "x1",
 "min": -2,
 "max": 2,
 "step": 0.01
 }, {
 "name": "x2",
 "min": -1,
 "max": 1,
 "step": 0.01
 }
],
 "model":{"gaussian_process": {
 "kernel_func": "Matern52",
 "scale_y": True,
 "scale_x": False,
 "noise_kernel": True,
 "use_scikit": True
 }},
 "optimization_type": "min",
 "initialization": {
 "type": "random",
 "random": {
 "no_samples": 3,
 "seed": None
 }
 },
 "sampling_function": {
 "type": "expected_improvement",
 "epsilon": 0.03,
 "optimize_acq": False,
 "outlier": False,
 "bounds": None,
 "scale": False
 },
 "n_sample": 1

}

Batch sampling
For many real-world optimization problems, you can evaluate several candidate parameters in parallel.
Thus, some optimization algorithms can work with batches of parameters - for example, by suggesting a
batch of 10 new sets of parameters to try, rather than just a single set of parameters.

To work with these algorithms, BOA supports batch sampling. When using batch sampling, BOA receives
multiple outputs, or responses, from the function it is optimizing and uses information from all of these
responses to formulate the next batch of parameters to try.

To use batch sampling, use the batch_sampling field in the BOA configuration:

52 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

batch_sampling
use

Whether to use batch sampling. Values are True or False.
batch_size

The batch size or maximum batch size, depending on type of batch acquisition function used)
type

The type of batch acquisition function used. Values are:
BatchThompsonSampler

batch Thompson sampler
KMeansSampler_EI

k-means clustered expected improvement batch sampler
qEI_CLSampler

Constant Liar batch sampler
qEI_BasicSampler

Basic Batch Sampler
B3Sampler_EI

Budgeted Batch Sampler
qEI_KBSampler

Kriging Believer Sampler

Example:

"batch_sampling": {
 "use": True,
 "batch_size": 5,
 "type": "BatchThompsonSampler"
 },

See hyper_parameter_tuning_batch.py for a complete example of how to use batch sampling
with BOA.

Recommend Batch Sampler with BOA optimizer is BatchThompson. All Batch Samplers do not
support domain defined as Bounds (continuous design variables).

See hyper_parameter_tuning_batch.py for a complete example of how to use batch sampling with BOA.

Multiple objective optimization
You might want to optimize more than a single objective. For example, you might be developing a new
drug for which you want to optimize its potency, but also want to ensure that it can be manufactured
economically. Thus, you also want to optimize the cost. This allows you to find the trade-off between the
best compound and the associated cost of manufacture.

The BOA multiple objective optimization functionality allows you to do this. Multiple object optimization
shares the same configuration foundation as standard optimization, but duplicates some of the fields so
that you can define the optimization configuration for each objective individually.

Multi-objective optimization doesn’t support domain defined as Bounds (continuous variables).Hence,
“bounds”: None should be used, and Domain should be defined as Grid.

These fields are used only when setting up multiple objective optimization:
task_weights

How much weight to attribute to each task.
combi_ops

Which operation to use when combining the task information during optimization. This can be either
sum or prod for each task.

Chapter 4. User Guide 53

samplers
This is populated with a list, each item of which is a dictionary (or JSON object) defining a sampler
object for each independent task, or objective. As such, each sampler dictionary (or JSON object)
contains the following configuration fields: name, optimization_typ, model, initialization,
and sampling_function, which are described in “Experiment configuration” on page 45.

Example:

experiment_config = {
 "name": "Multi Object",
 "type": "multi_object",
 "domain": [
 {
 "name": "x1",
 "min": -2,
 "max": 2,
 "step": 0.01
 }, {
 "name": "x2",
 "min": -1,
 "max": 1,
 "step": 0.01
 }
],
 "task_weights": [1,1],
 "combi_ops": ["prod", "prod"],
 "n_sample": 1,
 "samplers": [
 {
 "name": "Camelback",
 "optimization_type": "min",
 "model":{"gaussian_process": {
 "kernel_func": "Matern52",
 "scale_y": True,
 "scale_x": True,
 "noise_kernel": False
 }},
 "sampling_function": {
 "type": "expected_improvement",
 "epsilon": 0,
 "optimize_acq": False,
 "outlier": False,
 "bounds": None,
 "scale": False,
 "print_level": False,
 "run_epsilon": 0
 },
 "initialization": {
 "type": "random",
 "random": {
 "no_samples": 3,
 "seed": None
 }
 }
 },
 {
 "name": "Shifted Camelback",
 "optimization_type": "min",
 "model": {"gaussian_process": {
 "kernel_func": "Matern52",
 "scale_y": True,
 "scale_x": True,
 "noise_kernel": False
 }},
 "sampling_function": {
 "type": "probability_improvement",
 "epsilon": 0.03,
 "optimize_acq": False,
 "outlier": False,
 "bounds": None,
 "scale": False,
 "print_level": False,
 "run_epsilon": 0
 },
 "initialization": {
 "type": "random",
 "random": {
 "no_samples": 3,
 "seed": None

54 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

 }
 }
 }
]
}

Optimization with constraints
A common scenario is optimizing some function given a set of constraints on the function. For example,
say you are developing a new kind of detergent and you never want the cost of ingredients to exceed a
given amount. You can use constraint-based optimization to find the best combination of parameters that
fulfills your cost requirements.

BOA lets you perform optimization with constraints with either hard or soft constraints on the objective
function. Using hard constraints means that the parameter set is rejected if the constraint criteria are not
met. Using soft constraints gives the optimization a little more flexibility to find a balance between the
optimal set of parameters and the constraint criteria.

When using constraints, you must do the following:

• In the configuration, set the type field to constraints.
• Provide the constraint function to the BOaaSClient.run() call.

The constraint function should contain code that evaluates the parameters and returns either a 1 or 0. If
the constraint criteria apply and the set of parameters is not suitable, the function should return a 1.
Otherwise, the function should return a 0, as the parameters are valid and thus not 'constrained'.

Here is an example constraint function:

def constraint_func(x):
 c = 0
 if x[0][0] > 0:
 c = 1
 return c

In the above, if element x[0][0] is greater than 0, the function returns 1, indicating that this set of
parameters should not be considered. This is added to the BOaaSClient.run() call; passing it to the
constraint_f:

boaas.run(experiment_id=experiment_id, user_token=user_token, func=camelback6,
 constraint_f=constraint_func, no_epochs=10, explain=False)

See camelback_constraints_example.py for a working example of optimization with constraints in
BOA.

Note: PTF1 for Fix Pack 1.1.0.1 does not support a use case where in all the initial samples for an
experiment provided by the of BOA optimizer violates the constraint condition. In this case, BOA throws
an error.

Troubleshooting
Below is the troubleshooting guide for the common issues which we can observe while using BOA.

Stop_experiment API
It is advisable to execute stop_experiment() API after every experiment completion. This will help in
releasing the resources being used by the completed experiment. BOA experiments performed
through SDK should use stop_experiment() API. Experiments executed from Experiment Viewer have
to be stopped explicitly. Please refer BOA SDK guide for the usage of stop_experiment API.

Connection Refused error

If you are getting this error while running the experiment through SDK, please verify the host ip
address of BOA server provided in the command while executing the experiment with –hostname
xxx.xx.xx.xx.

Chapter 4. User Guide 55

Also, please verify the port which you have provided i.e. –port. BOA server should run the host and
port which you have provided.

JSON Decode error

If you are running the experiment on CLI and getting the below error:

simplejson.errors.JSONDecodeError: Expecting value: line 1 column 1 (char 0)

Above error indicates that there is some issue with the command line arguments which you should
have passed while running the experiment. For more information, please refer Camelback Example
under BOA SDK GUIDE.

BOA Experiment Client Keep Alive implementation:

IF user is executing long running experiment through BOA SDK and somehow the connection of
experiment client gets disconnected with the BOA server due to BOA server goes down, then user has
to start their experiment from beginning again. To tackle such user scenarios, we are sharing a keep
alive example code snippet that can be used for long running experiment.

Replace the below line-

boaas.run(experiment_id=experiment_id, user_token=user_token, func=camelback6,
no_epochs=args.epochs, explain=False)

With this function implementation

def check_server_connection(): """

Function to check for BOA server connection when BOA server is down, to keep client alive:

"""
 connection_attempt = 0
 def wait_for(min_s=1, max_s=360000, increase=1):
 """
 Iterator which yields i value until it is lesser than max
 """
 i = min_s
 while i <= max_s:
 yield i
 i += increase
 # This will make boaas.run to run in loop if in case of server disconnection
 for seconds in wait_for():
 # If BOA server is up and connected, it will go to try block
 # If boaas.run throws error due to connection lost with server
 # It will go to except block and try to reconnect to server
 try:
 boaas.run(experiment_id=experiment_id, user_token=user_token, func=camelback6,
no_epochs=args.epochs, explain=False)
 except Exception as exception:
 connection_attempt += 1
 print(repr(exception)+"Error occurred. Trying to reconnecting to server... ")
 time.sleep(seconds)
 # If server is still not reachable after above waiting period then stop this experiment
with the below error message
 msg = "Reconnection failed after {} connection attempts".format(connection_attempt)
 raise ConnectionError(msg)
Calling this function to reconnect to server in case of outage in between the experiment run
check_server_connection()

Delete BOA experiments from CLI
To delete an experiment from CLI, you can use the delete experiment shell script which will be helpful
in cleaning up the BOA system by releasing the resources used by these unwanted experiments. The
following is the details of the script:

• Script name: delete_exp_script.sh
• Directory Path : /boabuild/installer/bin

56 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

To delete a BOA experiment, run the following command:

/delete_exp_script.sh

This script will expect user to provide the below inputs:

• Id of experiment which user wants to delete
• User token which was used during the experiment
• BOA server IP address and Port

Disconnection Between LSF Host and BOA Server

Whenever the connection between LSF host and BOA server (LSF client) gets disconnected, do the
following workaround steps to bring back BOA server to the normal running conditions.

You can identify the issues, with the BOA experiments are failed and below error statements are
appearing in LSF LIM daemon log file stored at /home/share/lsf/log/lim.log.master

Intercluster request from host <172.xxx.x.x:xxxx> not using privileged port

Received request <5> from non-LSF host 172.xxx.x.x:xxxxx

1. Delete BOA experiments which are not started from MongoDB:

Do the following steps to delete the BOA experiments which are not in the "completed" state and
with “0” iterations.

• SSH to BOA host server machine with valid user credentials
• Run the following command on a terminal to get boa-mongo service container ID.

docker ps | grep boa-mongo

• An output similar to the following screen is displayed on the successful execution of the
command:

dbd01b3bf4eb boa/mongo:1.1.0.1-ppc64le "docker-entrypoint.s…"
27017/tcp 1-1-0-1_boa-mongo_1

• Run the following command to open bash terminal for "boa-mongo" container.

docker exec -it <boa-mongo_container_id> /bin/bash

• Run the following command to open mongo shell inside the “boa-mongo” container.

mongo

An output similar to the following screen is displayed on the successful execution of the
command:

MongoDB shell version v3.6.3
 connecting to: mongodb://127.0.0.1:27017
 MongoDB server version: 3.6.3
 Welcome to the MongoDB shell.
 For interactive help, type "help".
 For more comprehensive documentation, see
 http://docs.mongodb.org/
 Questions? Try the support group
 http://groups.google.com/group/mongodb-user
 MongoDB Enterprise

• Run the following set of commands on the mongo shell to delete the experiments which are not
started. You can collect the MongoDB user credentials from the administrator.

use boa
 db.auth('<mongodb_username>','<mongodb_password>')
 db.experiments.deleteMany({"$and": [
 {"sampler_config.status": {"$not": {"$in": ["completed"]}}},
 {"sampler_config.number_of_iterations": 0}]}

Chapter 4. User Guide 57

An output similar to the following screen is displayed on the successful execution of the
command:

switched to db boa
1
acknowledged" : true, "deletedCount" : 23

2. LSF Reconfiguration:

To reconfigure the LSF, do the following steps:

• Run the following command to reconfigure LSF daemons, then accept the prompts.

lsadmin reconfig

• An output similar to the following screen is displayed on the successful execution of the
command:

 Checking configuration files ...
 No fatal errors found.
 Warning: Some configuration parameters may be incorrect.
 They are either ignored or replaced by default values.
 There are warning errors.
 Do you want to see the detailed messages? [y/n] n
 No fatal errors found.
 Warning: Some configuration parameters may be incorrect.
 They are either ignored or replaced by default values.
 Do you want to reconfigure? [y/n] y
 Restart only the master candidate hosts? [y/n] y
 Restart LIM on <boaasrv181018> done

• Run the following command to restart mbatchd.

badmin mbdrestart

An output similar to the following screen is displayed on the successful execution of the
command:

Checking configuration files ...
 No errors found.
 mbatchd parallel restart initiated

3. Cleaning up LSF jobs:

It is recommended to kill all the jobs in the LSF cluster. To kill the jobs in the LSF Cluster, do the
steps that follows:

• Run the following command to switch to LSF administrator user.

su lsfadmin

• Run the following command to kill all the jobs

bkill -r 0
 Wait for bkill execution to get completed

4. Go to BOA installation directory, $BOA_INSTALL_DIR/deployment/default and run the following
command

docker-compose down

5. Manual clean-up of /etc/hosts:

Whenever BOA services are restarted during maintenance windows or failure scenarios, a
duplicate entry will get created in the /etc/hosts file. These duplicate entries may introduce
disconnection between the BOA services and LSF. BOA administrator should manually remove
these duplicate entries using the below mentioned steps:

• Login as BOA administrator to the BOA appliance.

58 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

• Review the “boa_config.yml” placed at path $BOA_ROOT_DIR/installer/samples/.
• Stop the BOA micro-services from the Admin GUI.
• Take note of the setting specified for “docker_subnet”
• For example, docker_subnet: "172.178.0.0/16"
• Remove entries from the “/etc/hosts” file for any IP Addresses that match the subnet mask

defined in the “docker_subnet” configuration property.
• For example, if your “docker_subnet” property is "172.178.0.0/16", you would remove /etc/hosts

entries starting with 172.178.0.x.
• After updating the “/etc/hosts” file, you can restart BOA services.

Note: The /etc/hosts file must only be updated only when the BOA microservices are in
“Stopped” state.

6. Go to BOA installation directory, $BOA_INSTALL_DIR/deployment/default and run the following
command

docker-compose up -d

Chapter 4. User Guide 59

Annexure I

60 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Working sampler type list

Table 34. Working sampler type list

Sampler Sampler type Domain type Initialization type

Normal Sampler expected_improvement Grid Random

Observation

Bounds Random

Observation

probability_improvemen
t

Grid Random

Observation

Bounds Random

Observation

adaptive_expected_impr
ovement

Grid Random

Observation

Bounds Random

Observation

adaptive_probability_im
provement

Grid Random

Observation

Bounds Random

Observation

epsilon_greedy Grid Random

Observation

Bounds Random

Observation

maximum_entropy Grid Random

Observation

Bounds Random

Observation

Random Grid Random

Observation

multi_sampler Grid Random

Observation

Constraints Grid Random

Observation

Chapter 4. User Guide 61

Table 34. Working sampler type list (continued)

Sampler Sampler type Domain type Initialization type

Batch Sampler Batch Thompson Grid Random

Observation

KMeansSampler Grid Random

Observation

qEI_BasicSampler Grid Random

Observation

qEI_CLSampler Grid Random

Observation

B3Sampler_EI Grid Random

Observation

qEI_KBSampler Grid Random

Observation

Tested and Supported Spectrum LSF Version
BOA MVP deliverable has been tested with Spectrum LSF 10.1 FP 9 (10.1.0.9).

Annexure II

62 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Camelback example batchThompson

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
import os, sys
from common.boa_examples_utils import BoaExamplesUtils
from boaas_sdk import BOaaSClient

example_description="""
 This example demonstrates basic BOA usage for a simple optimization problem.

 The BOA SDK has been designed to be simple to use, but flexible in the range of
 configurations available for tailoring the optimization. This is achieved using
 the BOaaSClient object, which facilitates all communication with the BOA server.
 The optimization configuration is handled via a Python dictionary (or
 equivalently a JSON file).

 The camelback example is a two dimensional optimization problem that optimizes
 the six humped camelback function. This function has global minima
 f(x) = -1.0316 at x = (0.0898, -0.7126) and (-0.0898, 0.7126))
 """

"""
Perform parsing of common commandline arguments shared by all BOA examples.
"""

args = BoaExamplesUtils.parse_commandline_args(example_description,default_epochs=40)
hostname = BoaExamplesUtils.get_connection_url(args)
print("Connecting to host: {}".format(hostname))
boaas = BOaaSClient(host=hostname,ca_cert_path=args.ca_cert_path)

def camelback6(x):
 # Six-hump camelback function
 x1 = x[0]
 x2 = x[1]
 f = (4 - 2.1 * (x1 * x1) + (x1 * x1 * x1 * x1) / 3.0) * (
 x1 * x1) + x1 * x2 + (-4 + 4 * (x2 * x2)) * (x2 * x2)
 return f

experiment_config = {
 "name": "Reg camelback function",
 "domain": [
 {
 "name": "x1",
 "min": -2,
 "max": 2,
 "step": 0.01
 }, {
 "name": "x2",
 "min": -1,
 "max": 1,
 "step": 0.01
 }
],
 "model": {"gaussian_process": {
 "kernel_func": "Matern52",
 "scale_y": True,
 "scale_x": False,
 "noise_kernel": True,
 "use_scikit": False
 }},
 "optimization_type": "min",
 "initialization": {
 "type": "random",
 "random": {
 "no_samples": 3,
 "seed": None
 }
 },
 "sampling_function": {
 "type": "expected_improvement",
 "epsilon": 0.03,
 "optimize_acq": False,
 "outlier": False,
 "bounds": None,
 "batch_sampling": {

Chapter 4. User Guide 63

 "use": True,
 "batch_size": 1,
 "type": "BatchThompsonSampler"
 }
 }

}

user = {"_id": "boa_test@test.com", "password": "password"}
user_login = boaas.login(user)

if user_login == None:
 user = {"_id": "boa_test@test.com", "name": "BOA Test",
 "password": "password", "confirm_password": "password"}
 boaas.register(user)
 user_login = boaas.login(user)

print(user_login)
user_token = user_login["logged_in"]["token"]
print("user token")
print(user_token)
create_exp_user_object = {"_id": user["_id"], "token": user_token}
experiment_res = boaas.create_experiment(create_exp_user_object, experiment_config)
print(experiment_res)
experiment_id = experiment_res["experiment"]["_id"]

def signal_handler(signal, frame):
 """
 Function to handle Ctrl+C signal
 """

 print("Aborting...")
 boaas.abort(experiment_id, user_token)
 sys.exit()

Catch ctrl+c signal to invoke its signal handler
signal.signal(signal.SIGINT, signal_handler)

boaas.run(experiment_id=experiment_id, user_token=user_token, func=camelback6,
no_epochs=args.epochs, explain=False)
best_observation = boaas.best_observation(experiment_id, user_token)
print("best observation:")
print(best_observation)
boaas.stop_experiment(experiment_id=experiment_id, user_token=user_token)

64 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Chapter 5. BOA Fix Tool
Program Temporary Fix 1 (PTF1) for Fix Pack 1.1.0.1 includes a new tool "BOA Fix Tool" for applying,
rolling back, and listing BOA PTF Packages.

PTF1 for Fix Pack 1.1.0.1 Deployment Using BOA Fix Tool
This topic describe the steps to deploy the PTF1 for Fix Pack 1.1.0.1 on your BOA appliance server.

1. Create a temporary directory for unpacking the PTF1 for Fix Pack 1.1.0.1 and set an environment
variable for the directory.

export BOA_PTF1_TEMPDIR=/tmp/
PTF1 mkdir ${BOA_PTF1_TEMPDIR}

Note: Here we used the temporary directory as "/tmp/PTF1".
2. Download the PTF1 for Fix Pack 1.1.0.1 to the BOA_PTF1_TEMPDIR. The package is named as "

boa-1.1.0.1-PTF-01-external-050120211101.tgz”.
3. Unpack the PTF1 for Fix Pack 1.1.0.1.

cd ${BOA_PTF1_TEMPDIR}
tar -xzvf boa-1.1.0.1-PTF-01-external-050120211101.tgz
tgz

4. • Create and export an environment variable for the root directory on your BOA Version 1.1.0.1
deployment. The PTF1 for Fix Pack 1.1.0.1 is deployed only on the deployment of BOA Version
1.1.0.1. The directory specified for this variable is the root of your BOA deployment. Under this
directory there are subdirectories namely "deployments", "installer", "license" and "sdk".

export BOA_ROOT_DIR=/opt/IBM/boa/1.1.0.1

Note: Here we used root directory as BOA Version 1.1.0.1 installation root directory.
5. PTF1 for Fix Pack 1.1.0.1 includes a new tool namely BOA Fix Tool for applying, rolling back and the

listing BOA PTF Fix Packages. You need to copy this tool to your BOA installation directory with the
following command.

cp ${BOA_PTF1_TEMPDIR}/boa_fix_tool.sh ${BOA_ROOT_DIR}/installer/bin

6. Before applying the PTF1 for Fix Pack 1.1.0.1, you need to stop the BOA infrastructure containers
currently running on the BOA Appliance. To stop the services, run the following command:

cd ${BOA_ROOT_DIR}/deployments/default
docker-compose down

7. • Run the following command to apply the PTF1 for Fix Pack 1.1.0.1 on your BOA deployment.

cd ${BOA_ROOT_DIR}/installer/bin
./boa_fix_tool.sh -a apply -p ${BOA_PTF1_TEMPDIR}/boa-1.1.0.1-PTF-01-SERVER-package.tgz

8. Run the following command to verify that the PTF1 for Fix Pack 1.1.0.1 is successfully applied on
your BOA deployment. The output indicates that the Fix ID 01 is installed.

 cd ${BOA_ROOT_DIR}/installer/bin
./boa_fix_tool.sh -a list

9. PTF1 Fix pack 1.1.0.1 includes the patches for 3 LSF binaries ("bsub", "mbatchd" and "mbschd"). The
LSF patches can be applied to the LSF Deployment using the below steps

• Shutdown the LSF cluster by running the following command.

© Copyright IBM Corp. 2021 65

lsfshutdown

• Setup an environment variable that points to the root directory for your LSF installation on the BOA
appliance and copy the LSF patched binaries

export LSF_ROOT=/home/share/lsf/10.1/linux3.10-glibc2.17-ppc64le/
cp ${BOA_PTF1_TEMPDIR}/lsf_patch/bsub ${LSF_ROOT}/bin/
cp ${BOA_PTF1_TEMPDIR}/lsf_patch/mbschd ${LSF_ROOT}/etc/
cp ${BOA_PTF1_TEMPDIR}/lsf_patch/mbatchd ${LSF_ROOT}/etc/

• To start the LSF cluster, run the following command.

lsfstartup

• You can validate the patch by validating the version of "bsub" on the master host.

bsub -V

An output similar to the following screen is displayed on the successful execution of the command:

IBM Spectrum LSF 10.1 build 1234567
Copyright International Business Machines Corp. 1992, 2016.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM Corp.
binary type: linux3.10-glibc2.17-ppc64le
notes: unoptimized for debugging purposes
fixes: Hot fix for BOA float client issue

10. To start the BOA infrastructure containers, run the following command.

cd ${BOA_ROOT_DIR}/deployments/default
docker-compose up -d

11. Your BOA Version 1.1.0.1 server deployment is successfully applied with the PTF1 for Fix Pack
1.1.0.1.

Rolling Back PTF1 for Fix Pack 1.1.0.1
This topic describe the steps to roll back the PTF1 for Fix Pack 1.1.0.1 from your BOA Appliance server.

1. Before you roll back the PTF1 for Fix Pack 1.1.0.1, you need to stop the BOA infrastructure containers
currently running on the BOA Appliance. To stop the services, run the following command:

cd ${BOA_ROOT_DIR}/deployments/default
docker-compose down

2. To roll back the PTF1 for Fix Pack 1.1.0.1 from your deployment, run the following command.

cd ${BOA_ROOT_DIR}/installer/bin
./boa_fix_tool.sh -a rollback -s latest

3. Run the following command to verify that the PTF1 for Fix Pack 1.1.0.1 is successfully rolled back from
your BOA deployment. The output indicates that no fix packages are installed.

cd ${BOA_ROOT_DIR}/installer/bin
./boa_fix_tool.sh -a list

4. To start the BOA infrastructure containers, run the following command.

cd ${BOA_ROOT_DIR}/deployments/default
docker-compose up -d

5. Your BOA Version 1.1.0.1 server deployment is successfully rolled back with the PTF1 for Fix Pack
1.1.0.1.

66 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

SDK Considerations of PTF1 for Fix Pack 1.1.0.1
PTF1 for Fix Pack 1.1.0.1 provides a complete refresh of the SDK component in file $
{BOA_PTF1_TEMPDIR}/boa-1.1.0.1-PTF-01-SDK-package.tgz.

Note: BOA SDK Python Library is same as BOA Fix Pack 1.1.0.1. You do not need to refresh your BOA
client environment for PTF1 for Fix Pack 1.1.0.1.

Though the BOA SDK Python Library is same as BOA Version 1.1.0.1, three BOA SDK example programs
have been changed to adhere to the new policy for handling of use_scikit. The below three programs are
included in file boa-1.1.0.1-PTF-01-SDK-package.tgz.

sdk/examples/camelback_example.py
sdk/examples/camelback_example_keep_alive.py
sdk/examples/hyper_parameter_tuning_example.py

Chapter 5. BOA Fix Tool 67

68 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Chapter 6. Release notes
These release notes provide an overview of what is new or changed in IBM Bayesian Optimization
Accelerator (BOA) versions 1.1.0, 1.1.0.1, and PTF1 for Fix Pack 1.1.0.1

Contents
• Enhancement and Issues Fixed in PTF1 for Fix Pack 1.1.0.1
• “New features and enhancements in Fix Pack 1” on page 69
• New features and enhancements in 1.1.0

Enhancement and Issues Fixed in PTF1 for Fix Pack 1.1.0.1
IBM Bayesian Optimization Accelerator Fix Pack 1.1.0.1 has a number of issues. In addition to the BOA
fixes, PTF1 Package also includes a BOA Fix Tool that is used to update the BOA Docker Images on the
BOA appliance and patches 3 LSF binaries.

New features and enhancements in Fix Pack 1

BOA 1.1.0.1 includes the following new features and enhancements.

• Bytecode Obfuscation for plain text python files in BOA

The MVP release was delivered with the plain text python code. With Bytecode Obfuscation
enhancement, plain text python files are being converted to python bytecode(.pyc) as part of BOA
installer.

New features and enhancements in 1.1.0
BOA 1.1.0 includes the following new features and enhancements. For more information, follow the link,
where provided.

• Productize BOA AC922 Appliance (non-clustered) BOA micro-services orchestration via docker-
compose

IBM Bayesian Optimization Accelerator is provided as-an-appliance in the MVP release. Along with the
host pre-requisite software, BOA will be pre-installed and deployed on the AC922 Power hardware. BOA
architecture comprises of multiple interacting micro-services which are deployed via docker-compose
orchestrator in a single node configuration. All the message communication happening on the external
BOA interfaces supports TLS encryption.

• BOA Python SDK

This is the Python client software development kit (SDK) for IBM Bayesian Optimization Accelerator. It
has been designed to be simple to use, but flexible in the range of configurations available for tailoring
the optimization. This is achieved using the BOaaSClient object, which facilitates all communication
with the BOA server. The optimization configuration is handled via a Python dictionary (or equivalently a
JSON file).

• LSF integration on BOA Appliance for BO jobs

Spectrum LSF 10.1 is used as a workload manager in the BOA appliance. It provides a comprehensive
set of intelligent, policy-driven scheduling features that enables full utilization of the available compute
infrastructure resources and ensures optimal application performance by running Bayesian
Optimization jobs in a docker container on demand.

• Interface functions

© Copyright IBM Corp. 2021 69

BOA supports a concept of Interface functions. These are the primary interfaces meant for BOA
interaction with external HPC simulation environments. As part of solving real-world problems,
optimized sample data points evaluated by BOA are supplied via interface functions for running
experiments on external simulators and receiving back the corresponding outputs for the simulation
runs. Sample interface functions showcasing integration with OpenFOAM simulator are hosted on the
repository links: https://github.com/IBM/boa-interface-functions/ and https://github.com/IBM/boa-
interface-functions/tree/main/Code_Aster respectively.

• BOA Admin GUI – Phase 1

Admin User Interface has been developed for Admin User where he can log in and can see the detailed
information like Dashboard, Services, Logs, User Management, Maintenance Mode, co.

– Login – Where Admin User logs in by entering the valid credentials and the first-time user lands on to
Configuration page and second-time user will navigate to Dashboard.

– Configuration - Where Admin User can see various configuration settings like Mongo settings, MQTT
settings, LSF settings, and Web Server settings.

– Dashboard – Shows the consolidated data for Admin GUI.
– User & Experiments – Displays registered users and whitelisted users and their experiment running.
– Services – Displays list of services with their status and an option to Restart and Stop All Services.
– Maintenance Mode – The User can start, stop all the experiments and services with setting the

custom message on Experiment GUI.
– Logs – Displays list of services with their individual logs and provide option to download the

consolidate data for all the services logs.

For more details on the Admin User Interface, refer Knowledge Center link https://www.ibm.com/
support/knowledgecenter/SS9TMV and https://www.ibm.com/support/knowledgecenter/
SS9TMV_1.1.0/base/boa_admin.html.

• Known defects

Below are the Open defects:

– Issue with Constraint sampler throwing Type Error. PTF1 for Fix Pack 1.1.0.1 does not support a use
case where in all the initial samples for an experiment provided by the of BOA optimizer violates the
constraint condition and it throws errors.

https://github.com/ibm-boa/IBM_dev/issues/43
– Issue with cobyla optimizer. In experiment with domain as “bounds” Cobyla optimizer is not working

when "use_scikit"= True.

https://github.com/ibm-boa/IBM_dev/issues/95
• Defect Fixed

Below defects have been fixed in the PTF1 for Fix Pack 1.1.0.1

– Issue of Batch Sampling with type qEI_KBSampler and B3Sampler_EI fails with runtime error for
optimizer jobs.

https://github.com/ibm-boa/IBM_dev/issues/23
– Issue of Error occurred during camelback_example_bounds with Epsilon Greedy sampler. BOA

1.1.0.1 (fix pack) does not support the Epsilon Greedy sampler for continuous optimization type
(Domain type bound).

https://github.com/ibm-boa/IBM_dev/issues/31
– Issue of repeated sampling points. Few data points are repeated for direct bounds optimizer

(continuous optimization) and few mean values are also observed in those data points.

https://github.com/ibm-boa/IBM_dev/issues/36
– Issue with basinhopping optimizer. Using basinhopping optimizer, it happens that the optimizer does

not accept any value to calculate the parameter.

70 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

https://github.com/IBM/boa-interface-functions/
https://github.com/IBM/boa-interface-functions/tree/main/Code_Aster
https://github.com/IBM/boa-interface-functions/tree/main/Code_Aster
https://www.ibm.com/support/knowledgecenter/SS9TMV
https://www.ibm.com/support/knowledgecenter/SS9TMV
https://www.ibm.com/support/knowledgecenter/SS9TMV_1.1.0/base/boa_admin.html
https://www.ibm.com/support/knowledgecenter/SS9TMV_1.1.0/base/boa_admin.html
https://github.com/ibm-boa/IBM_dev/issues/43
https://github.com/ibm-boa/IBM_dev/issues/95
https://github.com/ibm-boa/IBM_dev/issues/23
https://github.com/ibm-boa/IBM_dev/issues/31
https://github.com/ibm-boa/IBM_dev/issues/36

https://github.com/ibm-boa/IBM_dev/issues/50
– Issue with data Normalization while performing prediction. BOA optimization models are using

normalized data for prediction in the experiment config. This results in wrong predicted values at
times.

https://github.com/ibm-boa/IBM_dev/issues/52
– Issue with camelback example with initial observations and domain list.py fails. BOA does not

support File Upload Domain type with the LSF scheduler while performing the memory calculation.

https://github.com/ibm-boa/IBM_dev/issues/61

Chapter 6. Release notes 71

https://github.com/ibm-boa/IBM_dev/issues/50
https://github.com/ibm-boa/IBM_dev/issues/52
https://github.com/ibm-boa/IBM_dev/issues/61

72 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2021 73

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as follows:
© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

74 Notices

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Notices 75

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy

76 IBM Bayesian Optimization Accelerator 1.1.0.1: Deployment Guide

IBM®

	Contents
	Chapter 1. Deployment Guide
	BOA deployment process
	Configuration and deployment concepts
	BOA configuration tool reference
	Running the BOA configuration tool

	BOA configuration file reference

	Chapter 2. Administration Guide
	Log in to the administration GUI
	Navigating the dashboard
	Working in the administration GUI

	Chapter 3. BOA SDK Guide
	SDK API
	The user commands
	Experiment configuration and execution
	Camelback example

	Chapter 4. User Guide
	Getting Started with BOA
	Experiment configuration
	Complete configuration example

	Batch sampling
	Multiple objective optimization
	Optimization with constraints
	Troubleshooting
	Annexure I
	Annexure II

	Chapter 5. BOA Fix Tool
	PTF1 for Fix Pack 1.1.0.1 Deployment Using BOA Fix Tool
	Rolling Back PTF1 for Fix Pack 1.1.0.1
	SDK Considerations of PTF1 for Fix Pack 1.1.0.1

	Chapter 6. Release notes
	Notices
	Privacy policy considerations

